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ABSTRACT

Multiple-access interference (MAI) suppression techniques in DS/CDMA systems
usually assume additive Gaussian noise. Minimum mean squared error (MMISE) detec-
tors are near-far resistant in additive Gaussian noise channels. But the additive channel
noise in many communication channels is often non-Gaussian and impulsive. Signal de-
tection in non-Gaussian impulsive noise is traditionally focused on single-user channels.
Symmetric alpha-stable (SaS) probability density functions can accurately model large
classes of impulsive noise. The MMISE performance criterion cannot be used for Sas
processes with 0 < a < 2 since they have infinite variance. This dissertation considers
the problems of MAI suppression for DS/CDMA systems in the presence of additive non-
Gaussian impulsive channel noise modeled as a SaS process with 1 < a < 2. These MAI
suppression techniques help combat the near-far problem. First. the minimum dispersion
(MD) criterion is introduced to suppress MAIL Linear MD detection can be viewed as
expansion of the concept of the MVMSE detection for Gaussian multiple-access channels
to SaS non-Gaussian impulsive multiple-access channels. The linear MD detector is
implemented adaptively using least mean p-norm (LMP) algorithm. The performance
of the linear MD detector is analyzed in the context of a SaS process. Simulation re-
sults indicate that the adaptive MD detector shows good near-far resistance. Next. this
dissertation presents a MAI suppression method using the least L,-norm criterion. The
iteratively reweighted least squares (IRLS) algorithm recursively approximates the least
Lp-norm solution from weighted normal equations. Simulation results show that the pro-

posed detector provides remarkable performance improvements over the adaptive MD



xiv

detector in a wide range of near-far situations. The proposed detector has much better
near-far resistance than the adaptive MD detector. Finally. fuzzy hybrid detector com-
bines the adaptive MD detector and the hard-limiting matched filter (HLMEF) detector.
The HLMEF detector performs well when the additive impulsive noise significantly dom-
inates over MAI. Simulation results indicate significant performance improvements over
the adaptive MD detector alone in impulsive noise-limited environments. When MAI
dominates. the fuzzy hybrid detector nearly has the same performance as the adaptive

MD detector.
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CHAPTER 1 INTRODUCTION

1.1 Problem Statement

Direct-sequence code-division multiple-access (DS /CDMA) is one of various popular
multiple-access techniques in digital wireless communications. CDM.A\ is also referred
to as spread-spectrum multiple-access (SSMA) or spread-spectrum communications [1].
In DS/CDMA systems. users can simultaneously access the same channel using their
distinct spreading codes. even though all users’ signals overlap in time and frequency.
The receivers of conventional DS/CDMA systems consists of a bank of matched filters.
each of which is matched to each of the users’ spreading codes. It is well known that the
conventional linear matched filter (MF) or correlation detector is optimal in the sense
of minimum probability of error in an additive white Gaussian noise (AWGN) channel.
For DS/CDMA systems. this is the case for a singie-user channel without interfering
users in the presence of AWGN. The conventional MF detector was essentially regarded
as optimum due to the belief of many workers in spread spectrum that multiple-access
interference (MAI) is accurately modeled as a white Gaussian random process by the
Central Limit Theorem [2]. [3]. The fact that the MAI can not be any longer Gaussian
in multiple-access channels motivated the development of mutiuser detection. Poor
demonstrated in 1980 that the Gaussian approximation is completely useless in many
practical situations (e.g. in near-far environments). He improved the performance of
the conventional MF detector in multiple-access channels based on techniques from both

minimax robustness and non-Gaussian signal detection [4], [2]. [3].
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Since the spreading codes are not completely orthogonal. the MAI exists at the
output of each of the MF"s in conventional DS/CDMA systems. The amount of MAI
increases as the number of interfering users increases. and/or the received signal powers
of the interfering users increase. Especially, when there exist interfering users with high
powers. the strong VAl dominates over a weak received signal. which results in a near-
far problem. The conventional MF detector is highly sensitive to the near-far problem.
The near-far problem is thus a limiting factor to the capacity and performance of the
conventional DS/CDMA systems in spite of the fact that spread spectrum. by its very
nature. is an interference-tolerant modulation [5]. The performance of the conventional
MEFE detector is acceptable if the received signal powers are not too dissimilar and the
cross-correlations of the spreading codes are low enough [2]. [3].

In order to mitigate the effect of MAI on the conventional MFE detector. various re-
search efforts have focused on several areas such as code waveform design. power control.
forward error correction (FEC) codes. and sectored/adaptive antennas. If the spread-
ing codes are completely orthogonal. there exists no MAI in synchronous DS/CDMA
systems. However. since some degree of asynchronism is inherent in most practical
channels due to their path delays. it is not possible to design complete orthogonal codes
over all possible delays (see [1] and references therein). Power control is currently used
to solve the near-far problem in DS/CDMA systems based on the IS-95 standard [6]. [7].
[8]. [9]. The power control method equalizes the received signal powers and therefore
mitigates the near-far effect.

Above all. the most important approach to solve the near-far problem is MAT sup-
pression. This is also known as wideband interference suppression since the MAI is
wideband like wideband DS/CDMA signals. Note that narrowband interference sup-
pression is another area in DS/CDMA systems. This narrowband interference occurs
in overlaying systems during transitions between the old and new systems. For exam-

ple. the CDMA overlay or coexistence with the existent analog cellular system. called



advanced mobile phone system (AMPS) results in narrowband interference. The nar-
rowband interference is beyond the scope of this work. A reader is referred to [10]. [L1],
[12]. [5] and references therein for details.

This dissertation will focus on wideband interference or MAI suppression. For con-
ceptual clarity, it can be classified into multiuser detection and single-user detection de-
pending on its detection structure as in [3]. Multiuser detection is fully centralized. while
single-user detection is fully decentralized. In general. the single-user detection requires
knowledge of only one user’s (or desired user’s) signal parameters such as spreading code.
delay. and power. but not that of the interfering users’ parameters. The multiuser de-
tection requires knowledge of all users signals parameters. The delay and power of each
user are usually estimated at the receiver. All users’ spreading codes can be available
in base stations. but they are not easily available in mobile stations without receiving
the spreading codes from base stations. The distribution of that information may be
vulnerable to a wireless channel security problem. The complexity of the single-user
detection is much lower than that of the multiuser detection. Single-user detection is
more favorable in terms of its relative simplicity of implementation and wireless chan-
nel security. Thus. the single-user detection may be more appealing to mobile stations
rather than to base stations. In this work. we will focus on single-user detection. This
work is the communication problem that takes into account the effects of both MAI and

additive impulsive channel noise for increasing the system performance and capacity.

1.2 Literature Review

This section briefly reviews several MAI suppression techniques. The results are
primarily summarized from two survey papers [1]. [3]. The reader is referred to [2]. [3].
[13]. (14]. [L]. and [3] for detailed information on each scheme. Figure 1.1 shows an

organizational chart for MAI suppression in DS/CDMA systems.
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Figure 1.1 Organizational chart for MAI suppression in DS/CDMA sys-
tems.

1.2.1 DMultiuser Detection

Verdu [13] proposed and analyzed an optimum multiuser detector with minimum
probability of error and near-far resistance. The detector consists of a bank of MF's
followed by a maximum likelihood sequence detector. The optimum multiuser detector
requires knowledge of the spreading codes. delays. and powers of all active nsers. The
computational complexity increases exponentially with the number of users. Since the
detector is too complex to be used in practical DS/CDMA systems. most research efforts
have focused on the development of suboptimum multiuser detectors which have good
near-far resistance. lower computational complexity. and low probability of error. Most
suboptimum multiuser detectors can be classified info one of two categories: finear and
nonlinear [L].

A class of linear suboptimum multiuser detectors includes decorrelating and minimum
meuan squared error (MMSFE) detectors. This class of detectors applies a linear mapping
to the soft output of the conventional MF’s to reduce the MAI seen by each user [1].
Lupas and Verdu [16], [L7] introduced the decorrelating detector with the same near-far
resistance as the optimum multiuser detector. It completely eliminates the MAI at the
expense of noise enhancement. It provides significant performance improvements over

the conventional MFE detector under most conditions except when the MALI is relatively



low and the background noise is relatively high [3|. [L7]. [l]. The decorrelating detector
requires knowledge of the spreading codes and delays of all active users. but does not
require knowledge or estimates of the received signal powers of all active users. This
detector is analogous to the zero-forcing equalizer which is used to completely eliminate
inter-symbol interference (ISI) [1]. The computational complexity increases linearly with
the number of users.

Another linear multiuser detector is the MMVISE detector [18] which takes into account
the background noise. It requires knowledge or estimates of the received signal powers
of all active users. Thus. the MVISE detector generally has better performance in terms
of probability of error than the decorrelating detector. This detector is exactly analo-
gous to the MMSE linear equalizer which is used to combat ISI. The MMISE detector
strikes a balance between complete MAI elimination and noise enhancement [1]. As the
background noise goes to zero. the performance of the MVISE detector converges to that
of the decorrelating detector. while the performance of the MMSE detector approaches
that of the conventional MF detector as the noise gets very large. or the MAI gets very
small [L3]. [L3]. [1]. Since the performance of the MMISE detector depends on the powers
of the interfering users [1®]. there is some loss of near-far resistance comparing to the
decorrelating detector [1].

A class of nonlinear suboptimum multiuser detectors is divided into three classes such
as successive interference cancellation (SIC) [19]. [20]. [21]. multistage detection [22] (or
parallel interference cancellation (PIC) [23]). and decision-feedback detection [24]. [25].
The basic principle is to subtract out some or all of the MAI by estimates of the MAI at
the receiver. These detectors are similar to decision-feedback equalizers used to combat
ISI. The detectors have near-far resistance. These detectors requires knowledge of the
spreading codes of all active users and estimates of all active users’ parameters such
as amplitudes and delays. They provide significant performance improvements over the

conventional MFE detector. The computational complexity increases linearly with the



number of users. A reader is referred to [1] and references therein for a number of

variations on these types of detectors.

1.2.2 Single-User Detection

Poor and Verdu [26] investigated optimum decentralized detection for asynchronous
Gaussian multiple-access channels by taking into account the structure of the MAIL
The detection is the optimum one-shot detection where the detection of each symbol
1s based on the received signal only in that symbol interval. Detection is modeled
by the binary hypothesis testing problem and the optimum (in the sense of maximum
likelihood /minimum probability of error) decision is based on comparing the likelihood
ratio to a threshold.

Aazhang. Paris. and Orsak [27] proposed two detection schemes such as single-user
and multiuser for asynchronous and synchronous Gaussian multiple-access channels us-
ing multilayer perceptrons. These detectors approximate the optimum multiuser [L3]
and single-user [26] detectors. Mitra and Poor [28] also provided an implementation of
the optimal single-user detector for synchronous Gaussian multiple-access channels using
the radial basis function (RBF) network. Neural network techniques such as supervised
clustering and k-means clustering adaptively determine unknown system parameters in
unknown or changing communication environments. The adaptive RBF network pro-
vides near optimal performance and is robust in realistic communication environments.
Since the RBF network with the full user set requires 2% neurons for K users. it may
not be desirable if there are a significant number of active users. But it provides strong
performance with reduced user set.

Since a class of the optimum single-user detectors may require knowledge of the inter-
fering users. their complexity may be relatively high. Thus. adaptive single-user detec-
tors using the MMSE criterion have been introduced for MAI suppression in DS/CDMA
systems [29]. [30]. [31]. [32]. [33]. {34]. [35], [36]. [37]. [3&]. [39]. [40]. [41l]. The adaptive
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detectors offer significant performance improvements over the conventional MF detec-
tor and near-far resistance in AWGN channels. The adaptive detectors do not require
knowledge of the interfering users’ parameters such as spreading codes. delays. and pow-
ers. but they require training sequences for their adaptation to changing or unknown
communication environments. Adaptive single layer perceptrons using the MMISE crite-
rion were considered to suppress MAI [39]. Their convergence analysis were performed
in a multiuser communications environment and the performance of various algorithms
such as least mean square (LMS). MF. and decorrelating was compared via computer
simnulation. An adaptive correlator using the MVISE criterion was proposed to suppress
narrowband interference and mitigate multipath [42]. The performance of the adaptive
correlator is nearly comparable to that of a RAKE receiver with perfect channel informa-
tion in the presence of multipath only. The RAKE receiver degrades significantly. while
the adaptive correlator still performs well in the presence of both narrowband interfer-
ence and multipath. The adaptive MVISE detectors can be attractive not only in base
stations but also in mobile stations. Even though the adaptive MMISE detectors primar-
ily aims at combating the MAIL the previous works of [43] and [42]| implicitly suggests
that those detectors can simultaneously treat multipath and narrowband interference as
well as MAI [3%].

Blind adaptive interference suppression for near-far resistant CDMA was proposed
in [44]. It requires only knowledge of the desired user’s spreading code and associated
timing. The received amplitudes do not need to be known or estimated. The criterion is
to minimize the mean output energy. which is equivalent to minimizing the MSE without

training sequences.
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1.3 Motivation

There are several factors that motivate us to consider the problems of MAI suppres-

sion for DS/CDMA systems in non-Gaussian impulsive channels:

e Non-Gaussian impulsive channel noise models - The existing detectors for
MAI suppression have mainly been considered under the assumption of additive
Gaussian noise. Many communications links are often corrupted by non-Gaussian
impulsive noise which is generated by either natural or man-made noise [45]. [46].
[47]. [4%]. [49]. [30]. Man-made electromagnetic noise in urban mobile-radio chan-
nels has a noise density in which the tails decay at a rate slower than that of the
Gaussian noise density [45]. [51]. Therefore. more accurate noise models need to
be considered to avoid a significant performance degradation. Many models of
non-Gaussian impulsive noise can be divided into two classes of models: physical
models such as Middleton class A. B. and C [43]. [52]. [53]. [54] and empirical
models such as an e-mixture [43]. These models have widely been used for sig-
nal detection in impulsive environments [33]. [56]. [57]. [49]. [3&]. [51]. It was
shown that a general class of man-made and natural impulsive noise indeed has a
svmmetric stable distribution under appropriate assnmptions on the spatial and
temporal distributions of noise source and the propagation conditions [59]. [60].
Recently. symmetric a-stable (Sa.S) noise models have been used in [61]. [62]. [50].
A mixture model of Gaussian and SaS noise was especially taken into account in
[61] and [62]. Binary detection in a mixture of Gaussian and a-stable noise was
investigated in [61]. In [62]. the mixture noise was used to model the interference of
frequency-hopping (FH) spread-spectrum (SS) radio networks in a Poisson field of
interfering users [62]. A reader is referred to Section 2.5 for more description of im-
pulsive noise models. In this work. we model the additive non-Gaussian impulsive

noise as a SaS random process [60]. [63].



e Linear estimation within the framework of a SaS process [60]. [64]. [65] -
Since the second moment of a SaS noise process is not finite for 0 < a < 2. the
MMISE criterion is not valid anymore. The minimum dispersion (MD) criterion is
addressed in linear theorv of stable processes. Under the MD criterion. the best
estimate of a SaS random variable in the linear space of observations is the one
that minimizes the dispersion of the estimation error. Note that the dispersion
of a stable random variable plays a role analogous to the variance. A reader is

referred to Section 2.4 for details of SaS random process.

e Interference suppression in non-Gaussian impulsive noise channels - Lots
of research efforts have made in the area of signal detection over a single-user im-
pulsive noise channel (see [49]. [58]. [66] and references therein for details). In
[49]. performance of discrete-time linear and nonlinear correlation detectors was
studied in the presence of both MAI and additive impulsive noise. When the MAI
dominates over the additive impulsive noise. the conventional linear correlation (or
ME) detector still suffers from the near-far problem like in the Gaussian channels.
But the problem of MAI suppression for DS/CDMA systems in the presence of
additive non-Gaussian impulsive noise has not been given much attention. As far
as we know. there have been few works [67]. [63]. [51]. [69] on MAI suppression in
additive non-Gaussian impulsive channels. Mandayam {67]. [63] proposed adaptive
linear detection to minimize the average probability of bit-error using an infinites-
imal perturbation analysis (IPA) based stochastic gradient algorithm. In [51].
detection of spread-spectrum signals in a multiuser environment with additive im-
pulsive noise was considered to determine the presence of a new user and integrate
knowledge of this new user into the multiuser detector. In [69]. a near single-user
performance of the HLMEFE detector was achieved by incorporating a sgn func-

tion and using the steepest descent method for multiuser detection. Cheng, Shen.
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and Nikias [70] developed a family of optimal £#%)-metric interference estimators
for arbitrary 1.1.d. interference sequence and any discrete-type complex measure-
ment noise (or signal) sequence. The proposed interference estimators were tested
via computer simulation under the assumption that the additive interference is
modeled as an autoregressive (AR) sequence driven by the Sa$ process and bi-
nary random sequence. In [10], [L1]. and [12]. nonlinear fltering techniques were
introduced to predict an narrowband interference in the presence of additive non-
Gaussian noise. Rusch and Poor {12] modeled the CDMA signal as non-Gaussian
noise in the interference suppression process. Garth and Poor [L1] considered the
effect of non-Gaussian noise corrupted by impulsive background noise as well as
the CDMA signal. Even if the interference suppression techniques given in [L1].
[12]. and [70] are considered in non-Gaussian impulsive environments. they mod-
eled the relevant interference as a sinusoidal or an AR signal and therefore it is
not clear that these techniques will still be effective in real situations. where the
relevant interference is a digital communications or CDMA signal. The relevant
interference is quite likely to be poorly modeled as a sinusoidal or an AR signal.
Multiuser detection theory was first applied to solve this modeling problem of the
narrowband interference suppression [71]. When the narrowband interference is
indeed a digital communications signal. the existing techniques are less effective

than those based on the multiuser detection theory.

1.4 Objectives and Expected Contributions

The purpose of this work is to consider the problems of MAI suppression for asyn-
chronous binary phase shift keyed (BPSK) DS/CDMA systems in the presence of addi-
tive non-Gaussian impulsive noise modeled as a SaS process. The interference suppres-

sion techniques help mitigate the near-far problem. The expected contributions of the
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proposed research includes:

e Expanding the concept of the MMSE MAI suppression for Gaussian multiple-

access channels to SaS non-Gaussian impulsive multiple-access channels.

e Presenting MAI suppression techniques. for DS/CDMA systems in additive SaS
non-Gaussian impulsive channels. such as adaptive MD detection. least Ly-norm

detection. and fuzzy hybrid detection.

e Analyzing the performance of the linear MD detector in the context of a SaS

process.

e Assessing the performance of the proposed detectors by extensive Monte Carlo

simulation.

1.5 Dissertation Organization

Chapter 2 presents some preliminary results used throughout this dissertation. It
includes a mathematical description of a system model for a conventional DS/CDMA
system, an tllustration of the effect of MAI on conventional discrete-time ME detector.
a brief summary of the classical theory of stable processes, and a review of both channel
noise models and optimum detection based on Bayes rule. Chapter 3 through Chapter
5 consider the problems of MAI suppression for DS/CDMA systems in the presence of
additive non-Gaussian impulsive noise modeled as a SaS process. Chapter 3 presents
a linear minimum dispersion (MD) detector. It includes a performance analysis of the
linear MD detector in the context of a Sa$S process. Chapter 4 introduces a least
Lp-norm detector. Chapter 5 describes a fuzzy hybrid detector. These detectors for
MAI suppression are to combat the near-far problem. Simulation results are included
at the end of each of the chapters. Finally. Chapter 6 concludes the dissertation and

recommends future work.



CHAPTER 2 BACKGROUND

In this chapter. we introduce useful preliminary results used widely throughout this
dissertation. In Section 2.1. we describe a system model for a conventional DS/CDMA
system to be considered throughout this dissertation. The system model uses the as-
sumptions made in [49]. [58] and the approaches given in [34]. [49]. and [58]. Section
2.2 provides simulation environments and some simulation results on the system model.
Section 2.3 illustrates the effect of MIAI on the conventional MF (or correlationj detector
using discrete-time systemn model. Section 2.4 presents a brief summary of the classical
theory of stable processes. This includes the stable distribution and characterizations
and statistical properties. For further information. a reader is referred to [60]. [64]. and
[63]. Next we briefly present an introduction to linear theory of stable processes. These
materials will be primarily emploved in Chapter 3. Most of the preliminary results are
extracted from [64]. [60]. [63]. [72] and [65]. Section 2.5 discusses noise models. Section

2.6 describes optimum detection based on Bayes rule.

2.1 System Description

Consider an asynchronous binary phase shift keyed (BPSK) DS/CDMA system with
K users. The system model is shown in Figure 2.1. A users share the channel which
consists of A paths. Each path has a unity path gain and some fixed path delay.

The transmitted signal for the kth user is given by

sk(t) = V2Pebr(t)ck(t) cos(w.t +0r). k=1.2.--- K (2.1)
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where F; and 6, are the transmitter power and carrier phase. respectively. w. is the
carrier frequency. bi(t) is the baseband signal generated by the binary data symbol
b8)(i) € {—1.4+1}.—2c < i < 2c. and c¢x(¢) is the spreading signal generated by the
spreading sequence {c((,k). c(lk) Lo c(:)_l} with a processing gain V. It is assumed that

bi(t) and ci(t) are polar signals of duration T and T... respectively. Then they are of the

forms

()= 3 B @pr(t — iT) (22)
and

)= 3 ®pr(t - nTy) (23)
where ) = (:fﬁ);v and ) € {=1.+1} . pr(t) and pr.(¢) are the unity rectangular pulses

of duration T and T.. respectively. Assuming 7" = NT.. there exists one code sequence
{c(()k) . c(lk) S (,(\f')_ 1} per data symbol 4*!(i). This assumption is not usually required
for a DS/CDMA system to function properly. but is essential for the system studied in

this dissertation as in [38]. The resulting received signal for a given receiver is given by

rit) = si(t — ) — v(é)

M-

k=1

-
= > V2Pbi(t — Ti)er(t — i) cos(wet + o) +o(t). k=1.2.--- (K (2.4)
k=1

where ¢'(¢) is the additive non-Gaussian impulsive noise modeled as a SaS process with
zero location parameter p. Ty is the time delay due to the channel propagation delay and
the lack of time synchronism between the transmitter and receiver. and ¢, P

After the front-end chip-matched filtering, the received signal is sampled at the chip
rate 1/T,.. The signal samples over a symbol interval T can be considered as a signal
vector. Without any loss of generality, we can assume that the user of interest is user

number 1. who is referred as the desired user. and that the receiver is synchronized to
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this transmitter. Hence only relative time delays and carrier phase angles need to be
considered. The nth sample over ith symbol interval at the output of the chip-matched

filter is given by

(n+ )T +71
ra(i) £ r(nTc) = / r(t) cos(w.t + o,)dt (2.3)

nTc+Tl

for 0 < n < N -1 We can assume #; = 0 and r; = 0 due to the above assumption.
Furthermore. there is no loss of generality in assuming o, € [0.27) and 7 € [0.7).
2 < k < K since we are concerned only with carrier phase shifts modulo 27 and time
delays modulo T .

Figure 2.2 shows relative time delays of asynchronous CDMA systems. Without
loss of generality. we order the users such that 0 = 7y < ) < --- < 7. Since we
are interested in a symbol-by-symbol detection through this dissertation. we need to
consider the received samples within the single symbol period. i.e.. ith symbol interval
of T. During this symbol interval the kth interfering spreading sequence is modulated by
the data symbol 8()(i— 1) . for t € [0. 7%]. and by the data symbol 4*¥)(i) . for ¢ € [r¢. .
For 2 < k < KA. the relative delay for the kth user is written as 7, = my;T. + &, where
my is an integer between 0 and .V — 1 and 0 < & < 7. {see [34] and [58]). When 7, is
zero for every k. the asynchronous system reduces to a svnchronous svstem.

We assume that the integrator has a scaling factor of \/2/P, /T, associated with the

desired user. Then from (2.4) and (2.3). it follows that at time ¢ = iT

ra(i) = 60 (d) “>+Z \/:cos b‘“(z—l)()(n) b(k)(;:)eﬁ"’(n)]ﬂ,,(i)

(2.6)
for 0 < n < N — 1 where
2/P (n+ )T +my
va(i) £ v(nTc) = V2/A / 1(t) cos(w.t + o))dt. (2.7)
Tf—' aT.+1)
. L(k
(“ (n) = cﬁu)l(n: mg. Ox)
o) 6 - W + 0 (T, = 6;)- 0 2.8
n-m; -1+N k* ¥0<n<my (n me+ NV I 13 0<n<rg -1- (_.(_)
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and
-(k -(k
cf (n) & cf (n: my.. Or)
k . .
= CS;—)mk-[ ° 6k * ‘IIN l>n>mk+l + (Sg )mk " (Tf' - 6k) * ‘DAV—[ZTIETH," (2'9)

Here ¥g,) is the characteristic function of the set S(n). i.e..

Yogm=1lifnes
Tgm=4{ (2.10)

Wsn) = 0 otherwise.

Let
hﬁf)l £ égf)[(mk-ék)
T
- [“’,(o M. 6). 8 (L mg. 8). - - . &9 (V = L2 my. m} e RV, (2.11)
e & ¥ (myg.6y)
__—
~ [f”(o . 6i). 8 (L my. 6)..- <’~'>(,:)(.~v-1:mk.5k)] e RV, (2.12)
1 T r
) & [(:(()”.c(l“).--' ((\«)1] e RV, (2.13)
r(i) 2 [ro(i).ri(i). - .ry_1 ()] € Y. (2.14)
and
v(i) & [ro(d). v1(8). - .on 1 (D)) € RV, (2.15)

Then. in vector-form. (2.6) can be written as

«
r(i) =b<”(i)c<”+ZTi,/%cos(¢k b® (i — 1)e®) + 6¥) (i)e 5"’] +v(i)  (2.16)
k—n O€ I

where r(i) is the received signal vector at time ¢t = iT . c(!) is the spreading sequence
vector of user 1 at time ¢ = iT . v(i) is the additive noise vector at time ¢ = iT . It is
usually assumed that the binary data bits 5*)(i) s are independent. equiprobable and
have zero mean. Note that c (m;. dx) and c( )(m.k éx) are linearly independent and

are modulated by independent, different bits 6¢*)(i — 1) and *)(i) . so that the kth
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asynchronous user actually contributes two interference vectors during a single symbol
interval. We can therefore view the asynchronous system as the equivalent synchronous
system with additional A fictitious users. or interferers. as shown in Figure 2.2. The
total number of interference vector can range from K — 1 to 2(K — 1) according to the

relative delays of the actual K — 1 interfering users (see [34]). Suppose that

.

.. 1 /B ) (k ST g

) = Y R eos(o0) [590 - e, + 5] (2.17)
k=2 "

L-1
- Yil) (2.1%)
I=1
where L = 2(K — 1) + 1 and
(i) & %\/ P;'?:lcos(ozu)b(lﬂ)(’: - l)éﬁlfl” for ISISA -1
i) = ) o
o/ AR cos(0 g )R GE T for K<I<AR - =L-1L

(2.19)

Note that j,(7) is a function of all random parameters such as powers. phase angles.
delays. symbols. and associated spreading codes (i.e.. other users” spreading codes and
their path delays). It is clear that j,;(i) are generated by L — 1 interference symbols.

b, (i) = (bg,l).bgz)_. . _bf,["l)) where

DG —1) for1<I< K -1

by = (2.20)
bU-K:D(5)  for K<I<2(K-1)=L-1.
Then the received signal vector r(i) at time ¢ = iT is given by
r(i) = b0 (@) +§(i) + v(i). —x<i<x (2.21)

where j(i) £ [jo(i).- - . jx-1(i)]7 € RY. We will use (2.21) as the discrete-time received
signal vector at time ¢ = i1 throughout this dissertation.
For mathematical tractability. throughout this dissertation. the noise samples given

in (2.7) are assumed to be statistically independent as in [53] and [49]. This assumption is



13

valid when the noise process 1(¢t) is white and Gaussian. When the noise process is white
but not Gaussian. the noise samples are uncorrelated but not necessarily independent
at the appropriate sampling rate after the low-pass filtering of integrator shown in (2.7)

[57]. [58]. [49].

2.2 Simulation Environments

Next. we present simulation environments and some simulation results such as MAI
and additive noise samples generated by our system model. Relevant simulation results
corresponding to each of the interference schemes will be presented at the end of the
following chapters. We consider an asynchronous BPSK DS/CDMA system with A =
5 users, unless stated otherwise. We use an m-sequence of length .V = 31 chips as the
PN-spreading sequence. The additive Sa.S noise process is assumed to have a location
parameter. p. of zero. We consider the cases of the characteristic exponents a = 1.1.
1.5. and 1.9. The reader is referred to [73] for simulation of stable random variables.
The detector of the desired user is assumed to have perfect synchronization for timing,
carrier phase. and carrier frequency. The relative time delays and carrier phases of
the interfering nsers are assumed ro be uniformly distributed. The power ratio of the

interfering users to the desired user (PRID) is defined as

«
PRID = 22 B (2.22)
Py

where B is the transmitter power of user k. P; is set to 0.3 watt. Among K users.
only the transmitter powers of K, strong interfering users are varied and the transmitter
powers of the other A" — K, — 1 interfering users are equal to that of the desired user.
These simulation environments will be used throughout this dissertation. unless stated

otherwise. To obtain reliable bit error rates for all simulation conditions except for very

small values of BER (e.g. small PRID values of HLMEF detectors). we choose each sample
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size (or number of transmitted bits) of Monte Carlo simulation so that each normalized
accuracy of about 10 % may be assured. The normalized error (NE) [74] is given by

G
NE = —0% (2.23)

where F, is the estimate bit error rate P, and .V, is the sample size of Monte Carlo
simulation.

Figure 2.3 shows the amplitudes of the MAI (A" = 5 and K, = 2) samples after the
front-end chip-matched filtering for different values of PRID. Figure 2.3 (a) represents
the amplitude of the MAI with PRID = 6.021 dB. i.e.. for equal powers of the interfering
users. It is clear that the amplitudes of the MAI becomes larger as the PRID increases.
Figure 2.4 and Figure 2.5 show the amplitudes of the additive Sa.S samples after the
front-end chip-matched filtering for different values of characteristic exponent « and
dispersion . These plots denote that the additive noise become more impulsive as «

gets smaller.

2.3 Conventional Matched Filter Detector and MAI Effect

Figure 2.6 shows a generalized correlation (GC) detector [73]. The test statistic is

wTitten as

N-1

Z(i)ge = Z g(ra(i))et (2.24)

n=0
where g : R — R is a memoryless nonlinearity. For example. g(r,(7)) = r,(i) corresponds
to a linear correlation (LC) or matched filter (MEF) detector whose test statistic reduces

to

N-1

Z()e =Y ra()c? = (r(i).cV) = r(i)Tc (2.25)

n=0
where (r(i).c!") represents an inner product. For single-user AWGN channels. the

MFE detector is optimum and offers a sufficient statistic. while the MFE detector is
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Figure 2.3 Amplitude of the MAI samples after the front-end chip-matched
filtering with K = 5 and A, = 2: {a) PRID = 6.021 dB. (b)
PRID = 12.02 dB. (¢) PRID = 18.02 dB. (d) PRID = 24.02 dB.
(e) PRID = 30.02 dB. (f) PRID = 36.02 dB. (g) PRID = 42.02
dB. and (h) PRID = 48.02 dB.
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suboptimal for multiple-access channels regardless of the additive noise density [53].

g(rn(i)) = sign(rn(i)) corresponds to a hard-limiting correlation(or. hard-limiting MF.

sign correlation. sign) detector. It is a locally optimum detector for a single-user Lapla-

cian noise channel [75].

Next. we describe the effect of MAI on the test statistic of the MF detector. Substi-

tuting (2.21) into (2.25)

Z() e

= (b)) +j(i) + v(i)
M ey + (j(@). €My + (v(i).cV)

).cM) + (v(i). M)

vields

<b(”(i)

B

N -6+ (j(3)

) (V. M) + (5(i).

.c‘”)

ey + {v(i).ctM).

Again. substituting (2.17) into (2.26). we obtain

Z(i)c = N- b(”+Z ,/—cos (o) [ = 1) (& W) +60(3) (€. V)]

+<v(z).c“)> )

~~
[\
[
D

S

(2.27)
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Figure 2.6 Generalized correlator (GC) detector.

The first term of the right-hand side in (2.27) denotes the desired signal. The second term
indicates the MAI due to the interfering signals of other users. The last term denotes
the inner product of the additive noise and the spreading code vector of the desired
user. It is evident that the MAI mainly depends on %. K. and the cross-correlation
between ¢ c / c(“ and c(!). The most dominant factor is 7} which can cause the near-far
problem. Hence the MAI is a limiting factor for the conventional ME detector. Assuming
a synchronous system and ¢, = 0 for simplicity. (2.27) reduces to

K
Z(i)e = N -9 + Z%\/ﬁ b®) (i) (. cM)] + (v(i).cV) (2.28)

=2 i

.-



23

where the cross-correlation for the spreading codes is given by

N =1
pk[ = <C(k).c(l)> = (2.29)
0< (™ .My < 1. k+#1L

2.4 Theory of SaS Processes

2.4.1 Definitions and Properties

The theory of univariate stable distributions was essentially developed in the 1920s
and 1930s by Paul Lévy and Aleksander Yakovlevich Khinchine [63]. Classics of the
theory include {76]. [77] [7®]. Two equivalent definitions of a stable distribution are

given as follows:

Definition 1 A random variable X is said to have a stable distribution if for any pos-
itive numbers ay and a,. there is a positive number a and a real number b such

that
a Xy + a2 X L aX +b (2.30)

where X, and X, are independent copies of X and the notation L indicates that
the random wvariables a; X| + a» X, and aX + b have the same distribution. That

is. these random variables are said to be equal in distribution.

A random variable X is called strictly stable if (2.30) holds with &6 = 0. A stable
random variable X is called symmetric stable if its distribution is symmetric. that is. if

X and —X have the same distribution. A symmetric stable random variables is strictly

stable [63].

Definition 2 4 random variable X is said to have a stable distribution if there are real

parameters 0 < a < 2. -1 < 3 < 1.7 2 0. and —¢ < p < < such that its
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characteristic function has the following form:

sxlw) = E fexp jwX] = exp {juw — 7 l® [L+ jIsign(w) nfw.a)]}  (231)

where
tan<t. ifa#l
K(w.a) = 2 7 (2.32)
2loglw]. ifa=1
. ifw>0
sign(w) =< 0. ifw=0 (2.33)
~1. ifw <.

The parameters .. 3. v. p are called the characteristic exponent (or stability index).
svmmetry (or skewness). dispersion (or scale). and location (or shift) parameters.
respectively. The parameters J.+. p are unique except that 3 is irrelevant when

a = 2. These parameters are characterized as follows:

« controls the distribution type. It measure the thickness of tails of the distribu-
tion. As a decreases. the tails of the distribution get heavier. A stable distribution
with parameter « is often called a-stable. When a = 2 for any 3. the distribution
reduces to a Gaussian distribution. while when & = 1 and 3 = 0. the distribution

becomes a Cauchy distribution.

3 denotes the departure from a symmetric distribution about p. An a-stable dis-
tribution with 3 = 0 is symmetric about g and called symmetric a-stable (Sa.S).
The SaS distributions belongs to an important subclass of stable distributions.

The Gaussian and Cauchy distributions are both Sas5.

v represents the range of likely values. It is analogous to the variance of the
Gaussian distribution (a = 2). When a = 2. v equals a half of the variance of the

Gaussian distribution.



e 4 denotes the shift from zero. For Sa.S distribution. it is the mean when 1 < a < 2
and the median when 0 < @ < 1. A stable distribution is called standard if p =0

and v = 1.

A stable probability density function (pdf) is given by taking the inverse Fourier

transform of the characteristic function

1 i
fx(ria.3.7.p) = 0= / Fxlw)e“dw (2.34)
In general. there do not exist closed-form expressions for the stable distributions except

for the Gaussian (@ = 2). Pearson (a = 3. 3 = —1). and Cauchy {a = 1. 3=0) pdf’s.

But power series expansions of stable pdf’s are available. The Gaussian pdf is given by

)2
[x(z:2.0.v.p) = —ﬂ%exp |:~(I—-hlt—)—} (2.35)

where v = $Var(X). The Cauchy pdf is given by

1 ¥ o g
fx(zp.y.1) = Y P T (2.36)

where p 1s the median.

The main difference between the Gaussian and non-Gaussian SaS distributions is
their tails. The Sa5 pdf's have algebraic (i.e.. inverse power) tails. while the Gaussian
pdf has exponential tails. Thus. the Sa$ pdf's have heavier tails than the Gaussian pdf
(o = 2) as shown in Figure 2.7.

We will be concerned about Sa$ distributions throughout this dissertation. Next.
we present some of the useful properties and theorems of SaS distributions. These are

largely extracted from [60]. [64] and [63].

Theorem 1 (Generalized Central Limit Theorem) A random variable X is the
limit in distribution of normalized sums of the form

X+ X+ X
- an_bn

S, (2.37)
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Figure 2.7 Standard SaS probability density functions for different valuse
of c [64].
where the rundom variables X, Xy. -+ . X, are i.i.d. and n — . if and only if

X s stable.

This implies that stable distributions are the only possible limit distributions for
sums of i.i.d. random variables. Note that if the X|s are i.i.d. and have finite variance.
then the limit distribution is Gaussian. This is the result of the ordinary Central Limit

Theorem.

Theorem 2 Let X be u e-stuble random variuble with 0 < & < 2. Then

EllXIP] < x 0<p<ec. (2.38)
ElXI’] = x ip>a. (2.39)

If a =2. then
E[JXPP]<x forall p>0. (2.40)

Hence for 0 < a < 1. a-stable distributions have no finite first or higher order

moments. This excludes the use of statistical expectations: for 1 < & < 2. they have
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the first order moment and all the fractional lower order moments (ELOM’s) of order p
where p < a: for @ = 2. all order moments exist. In particular. all non-Gaussian stable
distributions have infinite variance. The FLOM's can be easily obtained by using the
following Proposition 1.
Proposition 1 Let X be a SaS random variable with zero location parameter p and
dispersion . Then
E[IX]P] =C(p.a)vs for0<p<a (2.41)

where

2T (BT (—p/a)
Clo-e) = Tmr o)

depends only on « and p. not on X. Here I is the gumma function defined by

(2.42)

[(z) = / t5letdt. (2.43)
0

Since Sa5 random variables with @ < 2 have infinite second moment (i.e.. variance).
the covariance does not apply to SaS random variables. Instead. we use the covariation

proposed in [60]. [63]. [76]. [77]. [78]. and [79].

Definition 3 Let X, and X, be jointly SaS random veriables with | < a < 2. Then

the covariation of X, on (or with. or and) X, is defined by
[_’\,[. -Yg]a = / S[S;a— l>1"(ds) (.244)
s

where S is the unit circle of R? and T(-) is the spectral measure of the SaS

random vector X = (X, Xy).
Here (-)*” is known as signed power which is defined as
t<2> £ |¢|* sign(t) (2.45)

for any real numbers t and a > 0. We now list some of the useful properties of the

covariation. Suppose throughout that 1 < o < 2.



Definition 4 Let X and Y be jointly SaS random variables with 1 < o < 2. Then the
covariation coefficient of X with Y is defined by

J— [‘X Y]rx DR 144
’\X.Y - [Yr YL,‘ - (.2.46)

These definitions for the covariation and covariation coefficient are not very conve-
nient in practice since they require the calculation of the spectral measure I' (). This

difficulty can be avoided by using the FLOM's as illustrated in Lemnma 1.

Lemma 1 Let X and Y are jointly SaS. Suppose that the dispersion of Y is v,. Then

L ElXyev e
{.’(. Y ]Q = —Emp—]—"/y forall 1 < P <. \_..)..-ll)

E[.'YY<F— l>]

A =———=— forall< . (2.48
XY E[IYIP] or sp<a . 1 )

Property 1 (Additivity in the first argument) If X,. X,. and Y are jointly SaS.

then

(X, + Xa. Y], = (X, V], + [Xa. V], (2.49)

Property 2 (Scaling) Let X and Y be jointly SaS. Then
[aX.8Y], = ab~*"'7 [X. Y], (2.50)

for any real numbers a and b.

Property 3 If X. Y|. and Y, are jointly SaS and Y] and Y, ure independent. then

[N
(1}
s
S—

[X.¥, + Yo, = [X. V], +[X. V4], . (2.
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Corollary 1 Although the covariution is linear in its first argument. it is in general not

linear in its second argument. That is.
[a[X[ + a2X2, Y]c! =a [.X[. Y]Q + aq [‘Xz, y’]a
and

(X.Vi + Yyl # [X.Vi], + [X.¥3)..

Corollary 2 The covariation is in general not symmelric in its arqguments. That is.

Y], # Y. X], .

Property 4 If X and Y are jointly SaS and independent. then

[—‘Y' er.‘z =0. ( .

[
Ut
[§V]
—

while the converse is not true in general.
Property 5 If X and Y are jointly SaS with a = 2 and zero mean. then

[X.Y]. = =E[XY] = éCov(XY).

~~
[
.
(S]]
ot
-
-

[N e

where Couv(-) is the covariance defined for the Gaussian process.

Proposition 2 Let U; s be independent SaS random variables with dispersions ~,. i =

1.2.--- .n. Suppose X and Y are both finite linear combinations of U;’s:

n

X = ZaiUi,

=1

Y = i{ bil:fi
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where a; s and b; s are any numbers and all b; s are not zero. Then X and Y are
SaS and

n

(X Xle = ) vilal™.

=1
n

Y.¥]e = D> 706"

=1

[X.Y]e = D vabi= ' (2.54)
=1
7}_ ~ . ibi<a_l>
Ay = Sstlid (2.55)

D imt Vi lb:l®
Let L, be a linear space of jointly SaS random variables. When 1 < « < 2. the

covariation induces a norm on L,,.

Definition 5 The covariation norm of X € L, with 1 <a <2 is

11 = (X Xa) " (2.56)
Property 6 If X is SaS with 1 < a < 2. then
1X0, =~ (2.57)

where v, is the dispersion of X.

2.4.2 Linear Estimation of Stable Processes

Gaussian processes belong to a class of second order processes which have finite
second order moments. Stochastic processes with finite pth order moments are called
pth order processes. A class of stable processes includes the Gaussian processes or the
second order processes as special examples. The linear estimation problem of stochastic
processes can be stated as follows: Let {X(t). t € T,,} be a stochastic process. where T,

is a finite or infinite interval. Given a set of observations of a stochastic process { X(t).
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t € T,p}. find the best estimate of an unknown random variable Y from the linear space
spanned by {X(t). t € T,,} [60]. This estimation problem is called either smoothing,
filtering, or prediction according to the relationship between observation ending time
and estimation time.

Linear theory of second-order processes (Gaussian processes in particular) has been
fully developed because the linear space L{X(t). t € T} is a Hilbert space. Under
the minimum mean squared error (MMSE) criterion. the best linear estimate of the
unknown Y can be obtained by an orthogonal projection of Y onto L{X(¢{). t € T,}
[60]. Minimum error dispersion linear filtering for scalar symmetric stable processes was
early presented in [R0]. The development of the linear theory of stable processes has
been limited due to the fact that the linear space of a stable process is a Banach space
when | < @ < 2 and only a metric space when 0 < a < L [65]. [60]. Nevertheless
much attention has recently been paid to the linear theory of stable processes and their

applications.

Linear Estimation using the MD Criterion Let {Y. X(t).t € T,} be stable processes
with | < <2 and L(X(t).t € T,w) be the linear space of the observations of the
stable process {X(N.t = T,}, where T, is an finite interval. Then. given the
observations {X(t).t € T,y} . the linear estimate Y of Y is defined as the best ap-
prozimation to Y in the linear space L (X (t).t € Tyy). i.€.. the random variuble Y

in L(X(t).t € Top) such that

HY v = f Y-z, (2.58)
a  ZeL(X(t).LeT,s)
or equivalently
E “Y v ,,} =  inf  E[Y -2z (2.59)
Ze L(X(t).teTus)

for 0 < p < a [63]. [60].
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(2.58) means that the best estimate Y of the stable random variables Y in the linear
space L(X(t).t € T,s) is the one that minimizes the dispersion of the estimation error.
Note that the dispersion {or covariation) of a stable random variable with 1 < a < 2 plays
an analogous role of the variance (or covariance) in the Gaussian case (¢ = 2). Since
L(X(t).t € T,) is a Banach space. Y always exists and is unique for 1 < o < 2 [#1]. It
is obtained by a metric projection of Y onto the convex Banach space L (X (t).t € T,;,).

For 1 < a < 2.Y is also uniquely determined [63] by

[Z. Y — Y] —0 forall Z€ L(X(t).t € Ty) (2.60)

[a 3

or

[X(z). Yy — y] —0 forallte T, (2.61)

(a3

This is analogous to the orthogonality principle for the linear estimation problem of
second-order processes. When a = 2. (2.61) is linear and thus a closed-form solution
exists for Y. For a < 2. it is highly nonlinear and hard to solve for the estimate ¥ (see

(60]).

2.5 Additive Non-Gaussian Impulsive Channel Noise Models

The additive white Gaussian noise model has been widely used in communication
theory due to its mathematical tractability for analysis and optimum solutions and
design simplicity. The Gaussian noise assumption is justified by Central Limit Theorem

in many situations. However. Rappaport and Kurz [82] said:

It has been common in technical literature treating signal detection in non-Gaussian
noise to assume that if the receiver integrates a sufficiently large number of in-
dependent noise bursts. the resulting distribution of the test statistic would be

Gaussian. However. if one assumes that the noise amplitude is a random variable
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having large variance. the fundamental limit theorem can not be invoked unless

there 1s some noise suppression before integration.

These comments represent that the Gaussian noise assumption may not be adequate
and justified any more in some situations. These situations are often caused by additive
non-Gaussian noise sources. The non-Gaussian noise is characterized as being of impul-
stve nature because it occurs with noticeable probabilities of large amplitudes for short
duration. The empirical data indicate that the pdf's of the associated noise processes
have a similarity to the Gaussian pdf. being bell-shaped. smooth. and symmetric. as
well as significantly heavier tails [50]. [R3].

The non-Gaussian impulsive noise comes from either natural or man-made noise
sources. The natural noise sources include atmospheric noise in radio links due to light-
ning discharges. ambient acoustic noise in underwater sonar and submarine communi-
cations due to ice cracking in the arctic regions [*4]. and noisy aquatic animals such as
snapping shrimps [?3]. The man-made noise sources include automobile ignitions. neon
lights. switching transients. accidental hits in telephone lines. heavy electrically-powered
machinery. and other electronic devices [43]. [46]. [47]. [48]. [49]. [3]. [30].

Many models of non-Gaussian noise have heen developed (see [501. [40] [4R]. {54].
[45]. and references therein for details). These models can be divided into two classes of
models: empirical models and physical models. Empirical models are developed to fit
collected data. often with little attention to the underlying physical mechanisms. while
physical models are developed to model these mechanisms directly [43].

Middleton class A. B. and C models {43]. [32]. [33]. [54] are widely used physical
models. Class A noise is narrow-band in which spectra of noise sources are comparable
to or narrower than the passband of the receiver. Class B noise is broad-band in which

spectra of noise sources are broader than the passband of the receiver. Class C noise is

the sum of Class A and Class B types.
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An s-mixture (or s-contaminated) model [43] is one of commonly used empirical

models. The first-order pdf of this noise model has the form
[l) = (L= )+ fogle) + € fiml) (2.62)

where €[0.1] and fyy(-) and fim(-) are the pdf’s corresponding to background noise
and impulsive (or contaminating) noise. respectively. The pdf f,,(-) is usually taken
to be Gaussian. The pdf fin(-) is chosen as one of various heavy-tailed pdf’s such as
the Laplacian or double-exponential and the Gaussian with large variance. In case of
Gaussian pdf fi(-). the ratio of the variance of impulsive component to the variance
of the background one. defined as v* = o2, /’U}fy . 1s usually taken to be between 1
and 100 [48]. [49]. [58]. This model is analytically tractable. This model frequently
represents a noise environment that is nominally Gaussian with an additive impulsive
noise component.

The SaS probability density functions can accurately model large classes of impulsive
noise [39], [60]. For example. the Cauchy pdf. as a family of SaS pdf’s. was already used
as a model for severe impulsive noise [32]. A reader is referred to Section 2.1 for detailed
description of Sa.5 pdf’s. In this dissertation. we will model additive non-Gaussian noise

as a SaS process.

2.6 Optimum Detection using Likelihood-Ratio Test

Let r(i) in (2.21) be an observation random vector. Suppose that pg (r(7)) and
p1(r(i)) are the probability density functions for the observation vector r(i) under hy-
pothesis Hy and H,. respectively. We can write binary hypothesis testing problem [26]

as

Hy : (i) =so(i) + V(i) «~ po (r(i))

Hy, : r(i) =s,(i) + V(i) «~ p (r(i)) (2.63)



where

) = () M) =
s() & B0(i)el) = so(Z) = +c for 81V (i) = +1 (2.64)
si(i) = =V for {1(i) = —1.

are completely known (i.e.. deterministic) vectors from two possible signal vectors and
(i) 2 (i) + v(i) (2.65)

are a combined noise vector of additive non-Gaussian impulsive noise and MAI. Here

the associated vectors are denoted as follows:

V(i) & [f(). (). Py (D] (2.66)
so(i) 2 [s00().s0.1(7). - .son-1(8)]". (2.67)
si(i) & [-5‘1.0(7:)--5‘1.1(7:)."‘--5'1..v—1(i)]r- (2.68)

The likelihood ratio can be written as

: b (r(3)
HEE) = )
A CORN0)
pe (r(2) — so(7))
_ P (ro(i) = s10{d). ri(7) = s10() .-+ crv{8) = sy -1(d) (2.69)

po (ro(i) = s00(). ri(Z) — s (8)- -+ .rnv-1(d) = sov-1(3)
(2.69) is used to implement the optimum detector based on Bayes rule which is known

as lkelithood-ratio test:

1 L) >T1
6g(r(i)) = (r(®) 2 (2.70)
0 if L(x(?)) <.

where 7 is a threshold and the value of § g(r(Z)) denote the index of the chosen hypoth-
esis. Bayes decision rule with uniform cost assignment becomes a minimum probability-
of-error decision rule. This rule is sometimes known as the marimum o posteriori

probability (MAP) decision rule for the binary hypothesis test because the minimum
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probability-of-error decision rule chooses the hypothesis that has the maximum a pos-
teriori probability [36]. It is very hard to find (2.69) in our scenario and in practice
because the distributions of the combined noise vector V(i) are unknown. If we make
an assumption that the elements of ¥(i) are statistically independent. (2.69) reduces to

a simpler form

N = Py (ro(Z) — s1.0(i). ri(d) = s50.1(2).- - - . rv1(F) = sy -1(2))
) = e o) = 5000 m1) = 3040 7w () = s 1)
H::ol Pe, (Ta(E) — s1a (0

: (i)
132 pe (Pa(i) = $0.4(2))
)
)

T e (Tali) = 51.0(3)

nog Poa (rali) = s0.n(?) (2.71)

where p,_ () is a marginal probability density function of (). Since log(-) is mono-

tonically increased. (2.70) is equivalent to

. if lo i
5o(r(i)) = 1 iflog L(r(i)) > logr (2.79)
0 iflog L(r(i)) < log 7.

This is often called log-likelihood-ratio test. Note that the above assumption of indepen-
dence is not true in practice.
On the other hand. in the same way as in [26]. [27]. and [2&]. this likelihood test can
3 [<0]. [21] 1<%}

be written as

o Elp(x()]
L@ = Elpeet)]
_ Elpy (x(d) = s1(8) —§(@)] (2.73)
E [py (r(3) = so(i) = j())] B

where the expectation is taken with respect to all random parameters of the interference
vector j(i) such as powers. phase angles, delays. symbols. and associated spreading
codes. (2.73) is also formidable to evaluate due to the computational complexity [27].
[26]. Multilayer peceptrons [27] were presented to approximate the likelihood-ratio test

based on (2.73) for asynchronous and synchronous Gaussian multiple-access channels.
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For synchronous Gaussian multiple-access channels. the likelihood-ratio test using (2.73)

was implemented by radial basis function (RBF) [23].



CHAPTER 3 LINEAR MINIMUM DISPERSION
INTERFERENCE SUPPRESSION

3.1 Introduction

This work was originally presented in [87] and motivated by the work presented in
[49]. [60]. [34]. [38]. [50]. [67]. [63]. and [70]. This chapter covers the problem of linear
MD detection for MAI suppression in non-Gaussian impulsive noise channels. Additive
impulsive noise is modeled as a SaS process. The linear MD detector is adaptively
implemented by the least mean p-norm (LMP) algorithm proposed in [60] and [3%]. The
performance of the linear MD detector is analyzed in the context of a SaS process.
We compare the bit error rates of the proposed detector with those of the conventional
MEF [49]. hard-limiting MF [49]. and MMSE [30]. [34], [38] detectors by extensive Monte
Carlo computer simulation.

This chapter is organized as follows. In Section 3.2. we describe the problem for-
mulation of the linear MD detector in the context of a SaS process. In Section 3.3.
we analyze the performance of the linear MD detector in the context of a SaS process.
The adaptive implementation is presented in Section 3.4. In Section 3.3. we present and

discuss simtlation results.
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3.2 Problem Formulation in the Context of a SaS Process

The MD detector minimizes the dispersion of the estimation error. This is similar
to the MMSE criterion for Gaussian channels. since the dispersion is analogous to the
variance. The detection scheme presented here is based on symbol-by-symbol detection.
It estimates the transmitted symbol 5(1(i) from the received signal vector r(i) at time
t = iT. The received signal vector r(i) is passed to the linear MD detector which consists
of an finite-impulse-response (FIR) filter w7 (i) as shown in Figure 3.1. The output of
the detector is sampled at the bit rate 1/T. The test statistic for the ith desired data bit
is written as Z(i) = wP(i)r(i). —oc < i < oc. where w(i) £ [wo(i). w1 (i).--- . wxy_1(i)]
is the vector of tap weights of the FIR filter. The decision rule is given by 5“’(1’) =
sign(Z(i)). Note that if w(i) = c(!) for all i. the detector reduces to the conventional

MFE detector.

) () n(i N-1(7)
) — e w - e —{ S
wolh) \ . wy(i)\ ¥ Wi-1(/)
R
v ¢ v
>
X & 6 (/)
ja QF
4
Adaptive e(/) Va '\:
Algorithm e 9\“
bﬁ)(,‘)
Training
Sequence

Figure 3.1 Adaptive MD detector for an asynchronous BPSK DS/CDMA

system.
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Define the estimation error e(i) at time ¢ = iT as e(i) = b{1(i) — Z(i). where b(1)(i)
is the binary data bit of user 1 at time ¢ = iT. The problem can be viewed as finding
the FIR filter w(i)T such that the dispersion of the estimation error e(i) is minimized.
Let Z(i) and é(i) be the test statistic and the estimation error corresponding to the
MD. respectively. Then (i) = bV (i) — Z(i) = bV(i) — w(i)Tr(i). where W(i) is the MD
solution for w(i). Using the results of the linear estimation problem for a SaS process

given in [60] and [63]. Z(;) = W(i)Tr(i) must satisfy:
[rn(i).b(”(i) _ Z(i)] =0.forallne0.N—1.l<a<?2 (3.1)

which is analogous to the orthogonalily principle used in the linear estimation problem
of second-order processes. Here [-.-], is the covariation defined in Section 2.4.1. When
a = 2. this converges to the orthogonality principle used in the linear estimation problem

of second-order processes:

Elra())(0(0) = Z(0))] = Elra(i)e(d)] = 0. (3.2)

3.3 Performance Analysis in the Context of a SaS Process

In this section. we study the performance of the linear MD detector in the context
of a SaS random process. For mathematical tractability. we assume that 5(i)c(!) and
J(i) are stationary SaS random vectors with the same characteristic exponent a as the
noise vector v(i) and that r,(Z) and e(i) are jointly SaS for alln € [0..V — 1]. It is
usually assumed that 61 (i)ctV, j(i). and v(i) in (2.21) are mutually independent for all
i € (—oc,o¢). In order to use the pseudo-linearity property with the second argument
N-
n =i

of the covariation. it is also assumed that the interference elements {j,(i)}Y_4 and the

noise elements {v,(i)},) are independent for all n € [0.N — 1]. respectively. The

covariation matrices of the interference vector and the noise vector can thus be written
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and

respectively. where

Cilnp = Un-Jol, = 7, Enp
and

[Celnp = [tn- toly = Yenbnap-

Here 6, , is the Kronecker delta function and + is the dispersion of the corresponding
SaS random variable. By the above assumption we can also let [b(”(i).b(”(i)]& = Y.
For notational simplicity, we will let b(i) = 6(!)(i) and ¢ = c(}).

Under the assumptions made above. the VD solution formula is given in APPENDIX

A by

- - <a-1> ~_ .

Wa =7, (1 - wlc) I'c (3.3)
where

WA [psa-1> g<a-1> -,<a—l>]T
a= Wy LUy Wy_y
and
a
r=r;+r..

For 1 < o < 2. (3.3) is hard to solve for w because it is highly nonlinear. When a = 2.
(3.3) is linear and a closed-form solution exists for w, = w . The solution for w is shown

in APPENDIX A as
a3

. R™! 3.4
l+o0icTR"lc © (3:4)

w =

which is equivalent to the MMSE solution derived in [34].
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For 1 < ¢ < 2. it is also shown in APPENDIX A that in matrix-form the dispersion

of the estimation error is given by
Ta(w(i)) = 7,(1 = w(i)Te)(1 — w(i)Te)<*™"> + w(i) Two(i) (3.5)
where
Wo (i) £ [wo()S . w ()< o os Lwy o (1) )T

The minimum solution for .J$(w(i)) is derived in APPENDIX A as

]r(; min 'IZIW(l)ZW.WQ(i)ziI,,

T

= (1 —wle)<e1>, (3.6)

When a = 2. the minimum mean-squared error Jy;, is shown in APPENDIX A as
Jain = 02(1 — wlc) (3.7)

which is also equivalent to the MMSE solution derived in [33] and {34].
As another performance measure. we define the signal-to-interference ratio (SIR) at
the output of the linear MD flter w(i)T

rw( )Th(;v\c wii) )

(i
w(OTGE) + v(). wli)TGE) + v(i)]a

Then by using the properties of the covariation and independence assumptions made

SIR & forl<a <2 (3.%)

\Th(i\c]
\ J
§

above. the output SIR can be shown in APPENDIX A as

R lWT(i)CIQ
W (DT wa(i)

for 1 < @ < 2. The output SIR corresponding the MD solution of w(i)=w and

SIR = (3.9)

W, (i)= W, is given in APPENDIX A by

SIR-.&ID = S]:RIW(:) =WiWo (1)=Wq

22— (%7c) %" = SIRya. (3.10)

a.min
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When ¢ = 2. (3.10) can be written in APPENDIX A as

2
SIRmax = (—gﬁ- - l) (3.11)

']min
which is also equivalent to the MVISE solution derived in [38] and [34]. The performance
analysis shows that the MD solution for w minimizes the dispersion of estimation error
and thus maximizes the output SIR under the independence assumptions.

For a particular sequence of L—1 interference symbols. b (i) = (b(f). bsz). el b(J[‘— ”) .
the interfering symbol vector is fixed as j(i) = js(i). To analyze the probability of er-
ror. we condition on the desired symbol 6(i) = 1 and the interfering symbol vector
b,(i) = (b(f’.b(f).--- .b‘f‘”). Assuming that Pr{b(i) = +1} = Pr{b(i) = —1} = 1/2.
the conditional probability of error can be written as

1 1
P.(by(i)) = 3Pr{Z(i) <0|b(i) =+1.bs(i)} + 3Pr{Z(i) >0|b(2) =—-1.by>i)}
= Pr{Z(i) <0|b(i) = +1.b,(i)}
0

S AR GEEIATE (3.2
where f.($:7z¢)-fo) is the SaS pdf with location parameter i, and dispersion 7y,
given in APPENDIX A. Assume that all the interference symbols are equally likely.
Then the average probability of error is given by
P = ) Pu(by(i)) Pr{b,(i)}

b,(2)

= s 3 P(bs()

b, (3)

< == 30 R0 = A(B3()

- bu(i)

where an upper bound FP.(b%(i)) on the average probability of error is caused by the
worst case sequence of interference symbols b5(i).
When a = 2. in APPENDIX A. (3.12) reduces to

w(i) (e +(i) -
mormwa(i)) 1)

Fe(by(i)) = Q (
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where Q(r) = 7‘; e ~#*/24t. Note that (3.13) is equivalent to the conditional proba-
bility of error given in [34].
(A.17). (A.18). and (3.12) imply that the conditional probability of error of the linear

MD detector is lowered if the dispersion of estimation error is minimized and thus the

output SIR is maximized.

3.4 Adaptive Implementation

Since a closed-form MD solution in general does not exist for I < a < 2. we consider
an adaptive solution. Assume that the input vector r(i) applied to the FIR filter is
stationary SaS process. We also assume that b(!)(i) and each element of r(i) are jointly
SaS. Consider the problem of finding the MD solution for w(i) such that the cost

function
Tu(w(i)) = lle(i)l, = |6 (F) = w(@) e ()],

is minimized. The cost function .J,(w(i)) is quite intractable as given in (3.5). An

equivalent cost function can be written as
T(wl(i)) = E {le(ilP} = E {1600 — w(i)7e(i) |}

for 0 < p<aand 0 < a < 2. We use the least mean p-norm(LMP) algorithm proposed
in [60] and [R9] to solve for the tap weight vector w(7) that minimizes the cost function
Jp(w(i)). Its adaptation formula is given by

Wi + 1) = W(i) + fimp - p - (D" sign(e(d)) - x(i) (3.14)

where p1,,,, > 0 is the step size and 1 < p < a. Note that the LMP algorithm reduces
to the conventional LMS algorithm for p = @ = 2. Defining an effective step size p,

as fior(€(i)) = fmp - P+ l€(i)|P7", (3.14) can be rewritten as

w(i+ 1) = w(i) + pepp(e(i)) - sign(e(i)) - r(i). (3.15)
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Thus the LMP algorithm can be viewed as the signed-LMS algorithm with a time-
varying step size. Note that for p = L. p.;((€(i)) = fym, is constant. For 1 < p < c.
err(€(Z)) depends on p and e(i). In general. p,(e(i)) is large before convergence since
the absolute error |e(7)] is large . while p, ,(e(7)) is small after convergence. Thus the
convergence rate of the LMP algorithm is fast at the transient state and gets slower
as the LMP algorithm converges. This phenomenon is noticeable as p increases. It is
shown in [38] that when input process and desired process are non-Gaussian. the LVMP

converges to solutions other than the Wiener solution for various p.

3.5 Simulation Results

We performed an extensive Monte Carlo simulation to show the improved perfor-
mance of the proposed adaptive MD detector in non-Gaussian impulsive noise. The bit
error rates are compared for several detectors such as the conventional MF. hard-limiting
MF (HLME). and MMSE detectors. We present several simulation results for different
values of the characteristic exponent & and the dispersion v of the additive SaS noise. In
all simulation results. we consider asynchronous BPSK DS/CDMA systems with K’ = 2,
3. 12. and 24 users. Weunse K, = 1. K, =2. K, =5. and K, =10 for K =2. K = 3.
K =12. and K = 21. respectively.

Figures 3.2 - 3.10 show the bit error rate (BER) performance as a function of the
PRID for the nine condition sets: {& = 1.1. v = 0.05. and K = 5 users}. {a = 1.1.
v =0.2. and K = 5 users}. {@« = 1.5. v = L. and K = 2 users}. {a = L.3. v = 0.2
and K =3 users}. {@ =1.5. v = 1. and A" = 3 users}. {a = 1.5, v = L. and K = 12
users}. {& = 1.5. v = L. and K = 24 users}. {a = 1.9. v = 0.2. and K = 5 users}.
and {a = 19. ¥y = 1. and K = 3 users}, respectively. When a = 1.1. ~ is set to 0.05
and 0.2 instead of 1. since none of the detectors perform decently with highly impulsive

noise with v = 1. The first PRID value of each plot corresponds to equal powers (or
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perfect power control). The BER performance of the proposed adaptive MD detector
remains nearly constant for most PRID levels. This reflects the near-far resistance of
the proposed detector for most degrees of near-far environment. The performance of the
adaptive MD detector is much better than that of the other detectors at high PRID.
while it is comparable to that of the conventional ME detector at low PRID. The HLVMF
detector has much better performance at lower PRID levels. but its performance rapidly
degrades as the PRID increases. since it is locally optimum for single-user non-Gaussian
(Laplacian) noise channels. The MMSE detector performs significantly worse than the
adaptive VD and conventional MFE detectors. The MMSE detector is shown not to be
effective in additive non-Gaussian impulsive noise channels modeled as SaS processes
as expected. When the system is heavily loaded (or K" = 12 and A, = 3). the adaptive
MD detector provides substantial performance gains over the conventional MFE detector.
In addition. the HLLME detector is less effective for low PRID levels. This implies that
the adaptive MD detector can be globally superior over all PRID levels as the system
gets more heavily loaded. When the system is more heavily loaded (or K = 24 and
K, = 10). the adaptive MD detector outperforms the other detectors and the HLMF is
not effective anymore for any low PRID level.

Figure 3.11 through Figure 3.15 show the BER performance as a function of the
mixed signal-to-noise ratio (SNR. ) for the five condition sets: {« = 1.1. PRID = 40 dB.
and K = 5 users}. {a@ = 1.5. PRID = 23.01 dB. and K = 2 users}. {& = 1.5. PRID
= 35 dB. and K = 5 users}. {a = 1.5. PRID = 40 dB. and K = 3 users}. and {a = 1.9.
PRID = 40 dB. and K = 5 users}. respectively. Here. the mixed SNR is defined as

mixed SNR £ 10log (M) = 10log <§> (3.16)

;
where 7 is the dispersion of the additive SaS noise process and s;(t) is the transmitted
signal for user 1 given in [58]. Table 3.1 shows the mixed SNR for each dispersion ~ of

the additive SaS noise.
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Alpha=1.1, Gamma=0.2, K=5; LMP with p=1
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Alpha=1.5, Gamma=1, K=2; LMP with p=1
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Table 3.1 VMixed SNR vs. ~

SNR (dB) + |SNR (dB) =~
1637 13| —10.00 3.00
1564 11| -3523 100

—14.77 9 —2.22 0.50
—13.68 T 1.77 0.10
—-12.22 3 7.78 0.05

The PRID is set to 35 dB or 40 dB to simulate severe near-far environments. The
adaptive MD detector gives a much lower BER than the conventional MFE detector except
in the extreme case of small SNR (i.e.. large dispersion of the additive noise process). It
is apparent that the adaptive MD detector outperforms the conventional MFE detector
in MAl-limited environments in which MAI dominates over the additive SaS noise. It
is also observed that the HLME and MMSE detectors always perform poorly. This is
due to the fact that the HLME is not designed for MAI suppression. but for single-user
non-Gaussian impulsive noise channels. while the MMSE criterion is not effective since
SaS processes have infinite variance.

Figure 3.16 shows the BER performance as a function of the number of active users
K for @ = 1.5 and v = 1. Figure 3.16 (a) denotes the case for equal powers. Each of
the associated PRID values is 0. 6.02. 10.41, and 13.62 dB for K’ = 2. 3. 12. and 24.
respectively. Figure 3.16 (b) denotes the case for unequal powers. Each of the associated
PRID values is 21.00 (24.00 only for HLMFE with A = 2). 36.02. 46.41. 49.62 dB for
K = 2. 3. 12. and 21. respectively. For equal powers (or perfect power control] the
HLME detector always outperforms the remaining detectors. But as K increases. the
performance of the HLME detector rapidly deteriorates in the range of between A = 2
and K = 12 and slowly approaches that of the adaptive MD and MF detectors in the
range of between K = 12 and K = 24.

Figure 3.17 and Figure 3.18 show the BER performance as a function of the charac-

teristic exponent ¢ of the additive SaS impulsive noise for K = 3 and K, = 2. Figure
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3.17 represents the case for v = 0.2. For equal powers with PRID = 6.02 dB (or perfect
power control). the BER performance of the HLMF detector does not appear due to its
very small values. The HLMEF detector outperforms the other detectors for all values of
c. For unequal powers with PRID = 42.02 dB, the adaptive MD detector significantly
outperforms the other detectors for all values of @. As « increases. the BER performance
of the adaptive MD detector increases. while that of the remaining detectors nearly re-
mains unchanged. This implies that the adaptive MD detector is very effective for this
channel condition. but the remaining detectors are not. Figure 3.13 represents the case
for v = 1. For equal powers. the HLMFE detector outperforms the other detectors for all
values of a. The performance of each of the detectors clearly improves as o increases
as expected. For unequal powers with PRID = 36.02 dB. the adaptive MD detector
outperforms the remaining detectors when « is approximately larger than 1.2. while
the MF detector does when « is approximately less than 1.2. The HLMEF and MMSE
detectors are not effective anymore in this channel situation since the BER performance
does not matter with a. For unequal powers with PRID = 48.02 dB. the adaptive MD
detector significantly outperforms the remaining detectors except when « is less than or
equal to 1.1. When « is less than or equal to 1.1. v = 1 is severely impulsive enough to
make all of the detectors deteriorate.

Figure 3.19 and Figure 3.20 show the transient behavior of the adaptive MD detector
using the LMP algorithm with p = 1 for PRID = 16.4 dB (or no power control) and
PRID = 10.4 dB (or perfect power control). The results show that the output SIR after
the adaptive MD filtering converges to the maximum value as the estimation error e(i)
converges to the minimum one as shown analytically in Section 3.3. It is observed that
the LMP algorithm takes on the order of several (ten) thousand bits to converge to a
steady state. Various simulation results show that the convergence rate depends on the

number of active users. PRID level. and «.
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Egqual powers: Alpha=1.5. Gamma=1. LMP with p=1
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Alpha=1.5, Gamma=1, K=12, PRID=46.4 dB: LMP with p=1
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CHAPTER 4 LINEAR LEAST L,-NORM INTERFERENCE
SUPPRESSION

4.1 Introduction

The adaptive minimum dispersion (MD) detector [37] has been proposed for inter-
ference suppression of DS/CDMA systems in the presence of additive non-Gaussian
impulsive noise modeled as a symmetric a-stable (SaS) process [60]. The adaptive
MD detector uses the least mean p-norm (LMP) algorithm [60] and has good near-far
resistance.

The LMP algorithm is a member of the family of stochastic gradient-based algo-
rithms like the LMS algorithm [90]. The LMP algorithm depends on the underlying
distributions of all input signals. It is shown in [R%] that when input process and de-
sired process are non-Gaussian. the LMP algorithm converges to solutions other than
the Wiener solution for various values of p. That is. for each value of p. the LMP al-
gorithm approximates the associated optimal solution derived from ensemble averages.
However. for SaS processes. the LMP algorithm has limitation on the values of p (i.e..
1 < p < a < 2). After reaching the optimal solution, the LMP algorithm randomly
moves around the optimal solution due to the presence of gradient noise like the LMS
algorithm. It is known that since the mean squared error (MSE) depends on time i, the
estimation error €(Z) is nonstationary (see [90] for further details). The LMP algorithm
has a slow convergence rate as shown in Chapter 3 and [60].

The above facts and limitation motivate us to consider the method of leust L,-norm
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for MAI suppression. It is much likely that higher values of p (i.e.. 1 < p < =) can offer
performance improvements over the adaptive MD detector using the LMP algorithm
with 1 < p < a < 2. The method of least L,-norm solves the linear filtering problem.
This method requires no assumptions on the statistics of the input signals unlike the
stochastic gradient-based algorithms. Hence the restriction of the values of p can be
released in this method. The conventional least squares (LS) (or Ly-norm) method
actually belongs to a family of least L,-norm methods. The LS method has been widely

used because of its computational simplicity. Rice and White [91] said:

The principle of LS is normally defended (if at all) on the basis of the assumption
that the errors e(i) are normally distributed. It is undoubtedly true that the L,-
norm is efficient in such a situation. probably the most efficient possible. However.
we would like to refer the reader to the proposal [92] that all texts on statistics
should state: Normality is a myth. there never has been. and never will be. a
normal distribution. Lp-norm estimation depends greatly on the distribution of
the errors. Furthermore. there is a large variation in the effectiveness of various

norms and no single norm is good (or even mediocre) in all situations.

The LS method provides the Wiener solution when the signals are Ganssian-distributed
and ergodic. The least Ly-norm method calculates its optimal solution corresponding
to a finite set of input signal vectors whenever a new input signal vector r(i) is avail-
able. The optimal solution remains constant during the interval of each data block.
This method can be considered for both stationary and nonstationary signals like the
LS method. Note that the LMP algorithm was derived under the assumption that the
input vector r(i) applied to the transversal filter is a stationary Sa.S process.

L,-norm estimation problem in linear regression has been an active research area
of robust data modeling [93], [94]. [91]. There have been two successful applications

using fast algorithms for L,-norm deconvolution proposed in [93]: least Ly-norm estima-
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tion of autoregressive model coefficients of symmetric a-stable processes [96] and linear
predictive modeling for sinusoidal frequency estimation[97].

This chapter considers the problem of interference suppression for DS/CDMA sys-
tems in SaS non-Gaussian impulsive noise channels using the L,-norm estimation. Simu-
lation results show that the detector based on the Ly-norm estimation provides significant
performance improvements over the adaptive MD detector in a wide range of near-far

situations. The proposed detector indicates superior near-far resistance.

4.2 Problem Formulation

Consider an asynchronous binary phase shift keyved (BPSK) DS/CDMA system in the
presence of non-Gaussian impulsive noise modeled as a SaS process as shown in Section
2.1. After the front-end chip-matched filtering the received signal vector r(i) € RV at

time ¢{ =T is given by
(i) =b(i)c+j(i) +v(i). —x<i<x

where b(i) is the signal bit of the desired user. c € R¥ is the spreading code vector of the
desired user. j(i) € RV is the interference vector. and v(i) € RV is the additive channel
noise vector modeled as a SaS process. Here T is the symbol interval and .V is the
processing gain (see Section 2.1 for detailed description). The interference suppression
can be formulated as a linear least L,-norm estimation problem: Find an optimal tap

weighting vector w(n) € RV of a transversal filter such that

min .J;,(w(n)). l <p< (4.1)

w(n)

where .J;,(w(n)) is a cost function defined as

Te(w(n) & 3 le()

> 16(6) = w(n)Te(i)]" (4.2)
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Here ¢(i) is the estimation error and w(i) € RV is the tap weighting vector of the
transversal filter. Assume that n > .V. Then this problem can be viewed as finding a

least L,-norm solution to the overdetermined linear system of equations

Aw(n)=b (4.3)
where
[ r()" | [ 5(1) | [ uo(n) |
nT : wi(n
As r(2) eRVNV. b b(_z) € R". and w(n) £ (=) ERY. (4.4)
RO | b(n) | | wy-(n) |

An overdetermined system typically has no exact solution. since b cannot belong to the
range of A. denoted by R(4). a proper subspace of R [98]. [99]. Hence we need to find

the optimal vector w(n) such that

min .J; (w(n)). 1 <p< x (4.5)

w(n)

for some suitable choice of p. where

Ji,(w(n)) = le(r)l; (4.6)

= |b—Aw(n)|? (4.7)

= _Z (b — Aw(n))” (4.8)

= 3166 ~ w@) @) (49)

Here e(n) is a residual vector and ||-||7 represents the pth power of the Ly-norm. Different
L,-norm solutions exist for different values of p [99]. Note that when p = 2 the least
L,-norm solution reduces to a conventional least squares (LS) solution and when p =1
it reduces to a Li-norm or least absolute deviations (LAD) solution. Since the object
function .J; ,(w(r)) is convex for 1 < p < ¢, the least L,-norm solution is unique except

for p =1 [97].
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4.3 Least L,-Norm Solution

To obtain the least L,-norm solution to (4.3). we use the approach given in [97]. A
reader is referred to [97] for further information. First. we differentiate (4.8) with respect

to the tap weights and set the partial derivatives to zero:

3T, (w(n))

P, () =0.j=0.1.---.N~1 (4.10)
or
S pl(e(m))P sgn((e(m)) (A)y =0. j=0.1 - N—1 (111
i=1
where (-), and (-);; denote the ith element of the associated vector and the ith row-qth
column element of the associated matrix. respectively. Since sgn((e(n}),) = IE:—E:;—;-T
(4.11) becomes
zn:p [(e(n)),[P~* (e(n)), (A),; =0. j=0.1.--- .V - L (4.12)
i=1
Let
W (n) £ diag (pl(e(n)),[P"*.pl(e(n),[P%.- -+ .pi(e(n)),[P~?) . (4.13)
Then (4.12) can be written as
(ATW(n)e(n))j =0.j=0.1--- . V-1 (4.14)
Substituting e(n) = b — Aw(n) into (4.14) yields
ATW(n) (Aw(n) —b) =0 (4.15)

or

ATW(n)Aw(n)= ATW(n)b (4.16)
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which is known as the weighted normal equations. Since the diagonal weighting matrix
W(n) is a function of the residual vector e(n). the weighted normal equations are non-
linear and usually must be solved via iterative methods such as the iteratively reweighted
least squares (IRLS) [100], [95]. [97] or the residual steepest descent (RSD) [95]. [LO1]
algorithm. When p = 2. the matrix W(n) becomes a scaled version of an identity
matrix and (4.16) thus reduces to the normal equations of the conventional LS. The
IRLS algorithm is summarized in Table 4.1. Here an absolute value of the normalized
L,-norm differential of the residual vectors is used as a stopping condition of convergence
(96].

le(n:k + )ll, — lle(r: £},

ST k=0.1.--. (4.17)

esc(n:k +1) =
P

Unfortunately. the recursive least L,-norm algorithm is hard to find because W(n) is
a function of the residual vector e(n) (see (4.13)). Hence. adaptive algorithms cannot
be easily developed for least L,-norm estimation. The IRLS algorithm converges for
2 < p < 3. while it diverges for 3 < p < ¢ [102]. [100]. [L03], [L04]. For 1 < p < 2.
the IRLS algorithm also converge under weak conditions [96]. [97]. [L00]. Hence. we
restrict our attention to the least L,-norm solutions with 1 < p < 3. The least L,-norm
(1 < p < 2) estimates are consistent like the LS and LAD estimates {L05]. {96].

The IRLS algorithm has more computational complexity than the LMP algorithm.
The IRLS algorithm requires the inversion of ATW(n:k)A € RV*Y of order N° com-
plexity [L06] as shown in step 4 of Table 4.1. The IRLS algorithm takes O( A, - V?) per
symbol. while the LMP algorithm takes O(2.V) per symbol. Here O(:V) represents the
computational complexity of order IV and Kj; denotes the number of iterations of the
IRLS algorithm. However. the IRLS algorithm gives better performance. but at the cost

of its computational complexity.
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Table 4.1 IRLS Algorithm

Step Description
1 Initialize tap weighting vector

w(n:0) = (ATA) “'ATb

Calculate residual vector

(e(n:k)): =(b— Aw(n:k));. i =1.2.--- .n

3  Calculate diagonal weighting matrix

oy J ek P A |(e(nik))il 2 e

(W(n:k))s = { -2 if [(e(n: k)| < ¢ ° i=1.2.-- .n.
where € is a positive small value to avoid the ith residual (e(n: k));
with value close to zero

4  Update tap weighting vector
w(n:k +1) = (ATW(n:k)A) "' ATW(n: k)b

) Go to step 2 or stop when convergence is achleved. 1.e..
es(n:k + 1) is less than =,

[RV)

4.4 Simulation Results

We compare the BER performance of the interference suppression using the least
Lp-norm criterion with that of the adaptive MD. MFE. MMSE. and HLMFE detectors
via Monte Carlo simulation in the same simulation environment as in Section 2.2. We
consider an asynchronous BPSK DS/CDMA system with A' = 3 users and K, = 2
users. In step 1 of the IRLS algorithm. the tap weighting vector is initialized as the
spreading code vector c of the desired user instead of the LS solution vector. In each
of the simulations the value of p in the least Ly-norm criterion is set to 1. unless stated
otherwise.

Figures 4.1 - 4.4 show the BER performance as a function of the PRID for the four
condition sets such as {&¢ = 1.1 and v = 0.2}. {@ = L.l and v = 1}. {& = 1.5 and
v = 0.2}, and {a = 1.5 and ¥ = 1}, respectively. Here « is the characteristic exponent
and 7 is the dispersion of the SaS noise process. We use the following acronyms in
Figure 4.1 through Figure 4.4: LP stands for the least L,-norm detector using the

IRLS algorithm. MD for the adaptive minimum dispersion detector using the LMP



algorithm. MFE for the conventional matched filter detector. MVISE for the minimum
mean squared error detector. and HLME for the hard-limiting matched filter detector.
The performance of the least L,-norm detector is nearly insensitive to all PRID levels.
This shows that the proposed detector gives much better near-far resistance than the
adaptive MD detector in a wide range of near-far environments ranging from mild to
severe situations. In particular. its BER performance does not degrade even in severe
near-far situations unlike the adaptive MD detector. Hence the proposed detector is
more effective against severe near-far environments than the adaptive MD detector. In
addition. the proposed detector provides significant BER performance improvements
over the adaptive MD detector for all PRID levels. The least L,-norm detector still
performs well for all PRID levels even though none of the detectors perform decently with
highly impulsive noise with v = 1. The steady state performance heavily depends on the
number of rows n of matrix A. i.e. data block size to be estimated. It is experimentally
observed that n = 32 gives best BER performance for the current simulation environment

Figure 4.5 through Figure 4.8 show the BER performance as a function of p for
v = 0.2 (with o-mark) and v = 1.0 (with *-mark). and @ = 1.53. K = 3: PRID =
6.02.18.02.30.02. and 42.02 dB. respectively. Given 1 < p < 3. the simulation results
show that the Lp-norm with p = 2.9 is best for PRID = 6.02.18.02. 42.02 dB. while the
Ly-norm with p = 2.7 for PRID = 30.02 dB.

Figure 4.9 and Figure 4.10 show the BER performance of the L,-norm detector as a
function of the PRID for different values of p for the two condition sets such as {a = 1.3.
v=0.2,. K=35. and K, = 2} and {a =1.53. v = 1.0. K = 3. and K, = 2}. respectively.
The detector’'s BER performance depends on the value of p in the L,-norm. The BER
performance significantly improves as p approaches 3.

Figure 4.11 shows the transient state behavior of the proposed detector using the
IRLS algorithm as a function of number of iterations for « = 1.5. v = 0.2, PRID

= 48.02 dB. and p = 2.7. In step 5 of Table 4.1. =, is set to 107%. The IRLS algorithm
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Figure 4.5 BER of the L,-norm detector as a function of p for different
values of v: @ = 1.3. K =35. K, = 2. and PRID = 6.02 dB.

takes on the order of a few tens of number of iterations to converge to a steady state for
each new symbol. The number of iterations actually depends on the stopping condition
alue =,.. If z,. is larger. fewer iterations are required. In this case. convergence can
be obtained within a few iterations. The IRLS algorithm operates on data blocks of
symbols. while the LMP algorithm works on a symbol-by-symbol basis. Therefore it
is not possible to compare the convergence rates of the IRLS with those of the LMP
algorithms quantitatively.

The limitation of the proposed detector is that the IRLS algorithm may have numer-
ical problems. In step 4 of the IRLS algorithm ATW (n:k)A may be close to singular
since. as described in [32]. the input correlation matrix AT A is nearly singular when the
number of all active users K is less than the number of chips V and the Gaussian noise
variance 1s small compared to signal power. However. it is less likely that this numerical
problem will occur in the presence of additive non-Gaussian impulsive noise modeled as

a SaS process since it has an infinite variance.
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CHAPTER 5 FUZZY HYBRID INTERFERENCE
SUPPRESSION

5.1 Introduction

In this work. we propose a fuzzy hybrid detector for interference suppression in
DS/CDMA systems when additive channel noise modeled as a symmetric a-stable (SaS)
process is present. In multiple-access impulsive noise channels. nonlinear detectors such
as the hard-limiting matched filter (HHLMF) are more effective than the matched filter
(MF) detector against impulsive noise-limited situation. The linear MF detector is more
effective against multiple-access interference (MAI)-limited situation than the HLMF
detector [53]. However. the linear MF detector has a near-far problem. To combat
the near-far problem in multiple-access impulsive noise channels. the adaptive minimum
dispersion (MD) detector has been proposed for DS/CDMA systems in the presence of
additive channel noise modeled as a SaS process. The adaptive MD detector has good
near-far resistance [37]. The performance of the adaptive MD detector is comparable
to that of the conventional MFE detector and inferior to that of the HLMFE detector
in impulsive noise-limited environments where additive impulsive noise dominates over
MAI Since the HLMEF detector is locally optimum for a Laplacian noise density [73].
it performs well in impulsive noise-limited environments [49]. [66]. [37] (see Chapter 3).
A hybrid detector that combines the linear MFE and the HLMF was introduced in the
form of adaptive detection of signals in single-user impulsive noise environments. This

hybrid detector was adaptively implemented such that an incremental signal-to-noise
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ratio (SNR) is maximized. This detector performs well in a wide range of the unknown
underlying noise environments [107].

These facts motivate us to consider a hybrid detection scheme which combines the
best features of the adaptive MD detector for MAI-limited environment and the HLMF
detector for impulsive noise-limited environment. The hybrid approach employs a linear
combination of the outputs (or test statistics) of the adaptive MD and HLVF detectors.
The problem is how to control the mixing parameter effectively. The mixing parameter
depends on the underlying channel environments. Simulation results show that the
fuzzy hybrid detector makes the best use of the advantages of the adaptive MD and
HLME detectors in a wide range of the underlying channel environments that range

from impulsive noise-limited to MAI-limited environments.

5.2 Problem Formulation

Consider an asynchronous binary phase shift keyved (BPSK) DS/CDMLA system in
the presence of non-Gaussian impulsive noise modeled as a SaS process as shown in
Section 2.1. The proposed detector scheme is shown in Figure 5.1. The resulting test

statistic is given by

where 3 € [0.1] is a mixing parameter. r(i) € RV is the received signal vector at ith
symbol interval. w(i) € RV is the tap weighting vector of adaptive MD detector. ¢ € RY
is the desired user’s spreading code. and g(r(i) € RV is a nonlinear vector function. The
first term indicates the scaled test statistic of the adaptive MD detector and the second
term indicates that of the HLMF detector. The adaptive MD detector is operated in-
dependently using the error signal e(i) = b(i) —w(¢)Tr(i) where b(i) is a desired signal bit.
For the HLMF g(r(i)) is chosen as g(r(i)) = [sign(ro(i)). sign(r(i)). - -+ . sign(ry (i)]"-

For 3 = 0 the test statistic of the hybrid detector reduces to that of the HLME. while
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Figure 5.1 Hybrid detector model.

for 3 =1 it reduces to that of the linear adaptive MD detector. A fuzzy system controls

the mixing parameter 3 depending on the underlying channel environments.

5.3 Fuzzy System

The fuzzy system is a single input. single output system. The input variable is the
power ratio of the interfering users to the desired user (PRID) given in (2.22). Theoutput
variable is the mixing parameter 3. The PRID is given for each of the simulations.

Previous simulation results. which are shown in Chapter 3 and [87]. show that there
1s a crossover point beyond which the linear adaptive MD detector is superior to the
HLMEF detector in terms of BER as the PRID increases. Figure 5.2 is a sketch of the
BER performance of the linear adaptive MD and HLMEF detectors as a function of the
PRID based on the previous simulation results.

This crossover point gets higher as the dispersion of the additive noise increases. i.e.,
the additive noise becomes more impulsive. In most cases the higher crossover point
occurs beyond the desirable range of BER performance as shown in [49]. In our case
v = | is large enough to provide a severe impulsive environment for most a’s of the
additive impulsive noise. From our specific simulation results, it is observed that the

crossover points are roughly located between PRID = 13 dB and PRID = 17 dB (see
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Figure 5.2 Sketch of the BER performance as a function of the PRID for
an asynchronous DS/CDMIA system.

Figures 3.2 - 3.10). Therefore. we choose PRID = 15 dB as the nominal crossover point
for our problem. The channel environments can be divided into two situations: impulsive
noise-limited (if the PRID is less than the nominal crossover point) and MAI-limited (if
the PRID is larger than the nominal crossover point}.

The PRID is a convenient quantity for performance comparison in simulations. How-
ever. in practice the carrier-to-interference ratio (CIR) is used. The CIR [108] is given
by

-

Ey B.
CIR = — - —
I, R

ﬁ
Ut
h
[N

~—

where E, is the energy per bit. [, is the interference power per Hz. R; is the bit per
second. and B, is the radio channel bandwidth in Hz. The PRID is closely related to
the [,5—: Since the % is determined by the measured signal power [9]. the PRID can be
estimated.

Erom the observations about the nominal crossover point and the characteristics of
the adaptive MD and HLMF detectors, we will determine fuzzy sets corresponding to

the input and output variables as shown in Figure 5.3 and Figure 5.4. For the input

PRID variable we define two fuzzy sets. The sets are for low (L) and high (H) levels of
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the PRID. The membership function m,.(r) of each of the fuzzy sets is a trapezoidal

function [109)]. [L10] given by
my.(z) = trapezoid(zr:a.b.c.d)
. r—-a d—r -
= ma.*c(rrun(b_a.l.d_c>.0). (3.3)

Table 5.1 shows the parameters for trapezoidal membership functions used in the input

fuzzy sets. Each membership function is symmetric about the nominal crossover point

at PRID = 15 dB. Figure 5.3 shows the membership functions of the input fuzzy sets.

Table 5.1 Parameters for Trapezoidal Mem-
bership Functions

Parameters a b c d

Fuzzy sets L -1 .12 120 IR
(PRID) H 12 138 30 236
Membership fanction plots
L H

_/\

D 15

inputvarisble 'prid®

Figure 5.3 Membership functions of the input fuzzy sets.

For the output variable 3 we define two fuzzy sets such as low(L) and high(H)
depending the output value 3 ranging between 0 and 1. The membership function

m¢(x) of each of the fuzzy sets is Gaussian function [L10] given by

r—c 2
mal(z) = exp [—é(—”—.'—’} (540

2 g?
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where ¢ 1s a position parameter and ¢ is a shape parameter. ¢’s are set to 0 and 1. o
is set to 0.03356. The Gaussian functions are heavily distributed around the vicinity
of 3 = 0 and 3 = 1 according to the characteristics of the adaptive MD and HLMFE
detectors depending on .7 as shown in (3.1). Figure 5.4 shows the membership functions

of the two output fuzzy sets.

eembership funcfion plots

3 A T2 S . 0 B [ '3 -3

outputvariable 'beta”

Figure 5.4 Membership functions of the output fuzzy sets.

Fuzzy rules can be written as antecedent-consequent pairs of IF-THEN statements

[L09]. [L11]. The two linguistic fuzzy rules are:
IFPRIDisL . TIIEN Jis L
and
IF PRID is H. THEN 3 is H.

Figure 5.5 shows the architecture of the additive [L11] (or Mamdani [109] ) fuzzy sys-
tem. Figure 5.6 shows the fuzzy correlation-minimum inference system using minimum
and sum for fuzzy implication and aggregation. respectively. Input fuzzy sets map the
crisp input value (for example, PRID = 16 dB) of the PRID into antecedent member-
ship or fit values. Each of the antecedent fit values scale the membership function of

the consequent fuzzy set with pairwise minimum. The fuzzy system sums the clipped



. Crisp
Cnsp Rule | —\"ﬁ(i 1 output
:;::;) — Defuzzifier ﬂ
uzzitier {Centroid)
(Input fuzzy sets)

Rule 2 wal= 1)

Figure 5.5 Additive fuzzy system.

waveforms of the membership functions corresponding to the consequent fuzzy sets and
computes the fuzzy centroid of the output membership functions. This defuzzification
produces the crisp system output (for example. 3 = 0.614).

Figure 5.7 shows a fuzzy input-output relationship generated by the fuzzy system.
This relationship shows how the mixing parameter .3 varies as a function of the input
variable. PRID. The mixing parameter .7 is close to zero or very small when the PRID
is less than 12.021 dB. This indicates that the resulting test statistic comes from the
HLME detector. When the PRID is larger than 18.021 dB. .7 goes towards one. In this
case the adaptive MD detector is selected. When the PRID level is in the range from
12.021 dB to 18.021 dB. 3 takes on intermediate values between 0 and 1. The fuzzy
system is insensitive to the PRID levels when the PRID is either larger than 13.021 dB
or less than 12.021 dB. because J remains nearly unchanged. In the transition range
from 12.021 dB to 18.021 dB. the fuzzy hybrid detector could suffer from a performance
degradation to some extent. but it can be robust to the PRID mismatch. The fuzzy

system was designed using the MATLAB fuzzy logic toolbox [110}.

5.4 Simulation Results

The fuzzy hybrid detector is tested via Monte Carlo simulation in the same simulation
environment as in Section 2.2. We compare the BER performance of the fuzzy hybrid
detector with that of other detectors: adaptive MD. MF. and HLMFE. We consider an

asynchronous BPSK DS/CDMA system with K = 5 users and K, = 2 users.
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prid beta
| '
'(
1 !
/
/
{
J
2
3
‘ j —
[1} 40
1] 1
16 0.614
Figure 5.6 The fuzzy correlation-minimum inference system using minimum

Figure 5.7

and sum for fuzzy implication and aggregation. respectively: In
this case PRID = 16 dB which gives the membership degree of
mg(16) = 0.667. m (16) = 0.333: The centroid output of the

svstem is .3 = 0.614.

1 Y T T ) = Y Y ———
0sF L‘ = Linear MD .
o3} |
o7 |
06} i

< os} - ]
2 HLMF + Linear MD
o+l ]
o3} ]
02} |
0.1 - i
o ) 4 L L N e L 1
¢ 5 10 15 20 25 30 35 40

prid

Mixing parameter 3 as a function of the input variable. PRID.
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Figure 5.2 through Figure 5.10 show the BER performance as a function of the PRID
for the three condition sets such as {& = 1.1 and v = 0.2}. {&@ = 1.5 and v = 1}. and
{@ = 1.9 and v = 1}. respectively. Here « is the characteristic exponent and ~ is the
dispersion of the SaS noise process. For each PRID level the performance of the fuzzy
hybrid detector is nearly comparable to whichever detector performs better. Note that
the HLME detector performs better than the adaptive MD detector using the least mean
p-norm (LMP) algorithm [60] when the PRID is less than about 18 dB and vice versa
elsewhere. The main advantage of the fuzzy hybrid detector is that this detector provides
significant performance improvements over the adaptive MD detector for impulsive noise-
limited environments (i.e.. if the PRID is less than the nominal crossover point of PRID

= 15 dB).
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CHAPTER 6 CONCLUSIONS

6.1 Summary

We have considered the problems of multiple-access interference suppression for asyn-
chronous DS/CDMA systems in additive non-Gaussian impulsive noise channels. The
additive non-Gaussian impulsive noise was modeled as SaS process with 1 < o < 2. We
primarily focused on the linear detectors based on transversal filters. We compared the
BER performance of the proposed detectors with that of different detectors such as the
linear MF. HLMF. and MMSE detectors.

In Chapter 3. we presented an interference suppression scheme based on the MD
criterion. The LMP algorithm was used to approximate the MD solution for the tap
weights. We derived some closed-form expressions for the MD detector in the context of
a Sab process under the independence assumptions made in Chapter 3. The closed-form
results are analogous to those of MMSE detectors. The performance of the adaptive MD
detector was compared with that of previously proposed detectors by extensive Monte
Carlo simulation. The simulation results showed that the performance of the adaptive
MD detector is much better than that of the other detectors in MAI-limited environ-
ments. while it is comparable to that of the conventional ME detector elsewhere. The
proposed detector is good near-far resistance in the presence of additive non-Gaussian
impulsive noise modeled as a Sa$ process. In this case the MMSE criterion is not ef-
fective. The VD criterion can be used as a possible alternative of the MMSE criterion

in SaS non-Gaussian impulsive noise channels. The MD criterion can be viewed as a
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generalization of the MVISE criterion to a SaS noise process. Since the LMP algorithm
is valid for p < @ < 2. the LMP algorithm with p = 1 can be robust to unknown
characteristic exponent a € (1.2]|. This observation is consistent with the fact that the
minimum L;-norm error criterion has been successfully used in impulsive noise environ-
ments. The limitation of the proposed detector is that the LMP algorithm used in the
adaptive implementation of the MD criterion has a slow convergence rate. The LMP
algorithm generally takes on the order of several thousand bits to converge to a steady
state. Since the covariation is nonlinear. the theoretical analysis for SaS processes is
limited.

In Chapter 4. we presented an interference suppression scheme using least L,-norm
estimation. The interference suppression was formulated as a linear L,-norm estimation
problem. This method requires no assumptions on the statistics of the input signals
unlike stochastic gradient-based algorithms such as the LMS and LMP algorithms. The
L,-norm solution for the tap weighting vector of the transversal filter was obtained using
the IRLS algorithm. The IRLS algorithm converges for | < p < 3. while it diverges for
3 < p < x . We thus considered the cases for | < p < 3. The simulation results
showed that the interference suppression scheme using the least L,-norm estimation
offers significant performance improvements over the adaptive MD detector using the
LMP algorithm. The detector’'s BER performance depends on the value of p in the
L,-norm. The BER performance sigunificantly improves as p approaches 3. The least
Lp-norm detector has better near-far resistance than the adaptive MD detector at the
cost of higher computational complexity. The computational complexity of the IRLS
algorithm is O( K, - V3) per symbol. while the LMP algorithm takes O(2.V') per symbol.
Here O(N) represents the computational complexity of order N and KA}, denotes the
number of iterations of the IRLS algorithm.

Finally. interference suppression technique using the fuzzy hybrid approach was pre-

sented in Chapter 5. This hybrid detector takes advantage of the performance of the
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HLMEF detector in impulsive noise-limited environments and the performance of the
adaptive MD detector in a MAl-limited environments. The hybrid detector linearly
combines the test statistics of the adaptive MD and HLMEF detectors using the mixing
parameter 3. This mixing parameter was controlled by a fuzzy system according to the
underlying channel environment. The simulation results showed that the performance
of the fuzzy hybrid detector is a combination of the better performance characteristics
of the adaptive MD and HLMEFE detectors depending on the underlying channel environ-

ments.

6.2 Recommendations for Future Work
Some possible directions for future work are:

e Fast adaptive algorithms can be considered to speed up the convergence rate of the
adaptive MD detector. Further study is needed to examine the transient behavior
such as the stability conditions in the context of a Sa$ process. Since the Sa$
process does not have a finite second-order moment. conventional methods based

on the first-order and second-order moments cannot be used.

e The effect of higher values of p (p > 3) in the least L,-norm estimation on the
steady state performance should be investigated. The IRLS algorithm converges
for | < p < 3. To get an insight of higher values of p. other algorithms can
be introduced. Further study should be focused on adaptive implementations.

Methods for reducing computational complexity can be considered.
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APPENDIX A COMPLETE DERIVATIONS FOR

SECTION 3.3

Derivation of MD Formula and Relevant Solutions

Under the assumptions made in Chapter 3. we can solve (3.1).

it follows that

Starting with (3.1).

[ra(0).5) = 2)] = [ral)-b0) = #Tx(3)] , =0

or
N-1
Pm%+hm+mmwm— @wm%+mn+mm}=o
p=0 Q
or
[ N-ol N-1 N-l ‘I
b(i)en + jn(i) + 1n(5). (1 - ,z-;rp> b(i) = () = Y ()] =0
'_ p=0 p=0 p=0 J:,k
or
A
T N-1 V-1 N-1 7
b(i)cn (l - "’pt,p) b(i) — Wpip(i) — Z u.'pr(l)j| +
L p=0 p=0 p=0 .
53
T N -1 N-1 s
Jn(2). <1 - p%) U—plp( ) — Z Wplp(i T
L p=0 p=0 a
<
T N-1 N-1 V-l N
MWQ—Z@QWPZ@MO dptp(i)
L p=0 p=0 p=0 .

(A.L)
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foralln € [0.N — 1] and 1 < & < 2. Applying the properties of the covariation given in

Chapter 2 to the left-hand side of (A.1) yields

4 = [b(i)cn, (1 - Z zzr,,cp) Z o (i) Z wpvp(i)J
=0 a

— { Z <a l> b(l)] }
— “/b(l—W c)<a l>cn.

N-1 N-1 N-1
B - [j,.m. (1 _ z) S i zw.pm}
p=0 =0 @
N-1
= _Zu}:a‘_l}[rﬂnth

p=0
— _U:,:Q—l>.",jn
and
r V-1 V-1 N-1
C = [rn(z) (1 - u?,,c,,) b(i) = 3 Eppld) - zzplp(z)}
p=0 p= p=0 @
N-1
S i
p=0
— _U};L‘ L/,..Un
Substituting 4. B. and C into (A.l) yields:
- a-1> - — - -
b (1 _ WTC)< x cn — LL':a l>7jn _ w:a 1>7vn =0
or
- <a-1> .
(Vo + 7o) =7 (1= %Te)™ e, (A.2)

foraln € [0.NV — 1] and 1 < @ < 2. In the matrix-form. (A.2) can be written as

TWa=7(1-%c) "¢ (A.3)
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which yields (3.3). Let & = 2. Then. since Wy,|q—2 = W. (3.3) reduces to

w="(l-wc)l e (A.4)
Taking the transpose of both sides of (A.4) and multiplying by c gives
wlic = (1 —wlec) (I Hle.
Solving for wlc and substituting it into (A.4). we have
W= L+ */,,c?zl“'r)“cr—lc (4.5)
where W is the minimum dispersion solution for w. Note that when a = 2. v, = %ag

and T =R ={R". where 0? = E[[|5(i)]’] and R2 R, +R. = E[j-j"]| + E [v- vl

Hence (A.3) becomes (3.4).

Next. pre-multiplying both sides of (A.3) by w’ gives

wITw, = v,(1 — wlc)<* Pwlc. (A.6)
From (3.5) and (A.6) it follows that
Joma = Jalwi)=w.waiij=wa
<a— l>€/TC (:\.T)

Wl =wTe)(l —wTe)**> > ++,(1 — wle)

which reduces to (3.6). Let Jg, = E [Ié(i)|2] . where .J,;, is the minirnum mean-squared

error. Then. when a = 2, (A.7) also reduces to

1

. L " _ ,
E (@] = 3mia = 505(1 = #T¢) (A8)

| —

2 _
aé—

o) —

Q —
'](x.min -

NG

t

Hence we obtain (3.7).
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Derivation of Output SIR
By using the properties of the covariation and independence assumptions made in
Chapter 3. it follows:
Numerator of (3.3)
= [w(i)To(i)c. w(i)Tb(i)c]
= w(i)Te(w(i)Tc)<*™ " [b(i). b(i)],

= w(i)Tc IW(i)Tc[a-l sign(w(i)Tc)y,

= |w(i)Te|", (A.9)
and
Denominator of (3.8)
= [(w(H)TGE) +v(@). wi) TG0 + v()],
N-1 N-1
- [Z (D) 0p (i) + (). 3 g Gigli) + v,,o:))J
p=0 7=0 e
= Y wl) [jpo:) (). 3 (D) + 14(3)
p=0 7=0 2
N-1 N-1 3 N-1 1
= D (i) { Gpl0). ) wai)(,(8) + v (m} + | eali). D () (igli) + r.n,(rr))J }
p=0 q=0 @ L 4=0 @
N-1 N-1 N-1
= U-’p(i) { U-"q(i) [jp(i)vjq(i) + L'q(i)]q + Z wq(i) [’L'p(i)-jq(i) + ""I(':)]p.}
p=0 q=0 q=0
N-t N-1 N-1
= “-’p(i) { wq(#) Up(i)-jq(i)]u + Z wy(2) [7-'p(i)r ’-'q(’:)]q}
p=0 q=0
N-1 N-1
= Zu,,(t {Z“’q(’ rl?a""z wy(i) | }
p=0 q=0
= wi(i)[; +T,)wa(i) =wl(i )['WQ( ). (A.10)

Substituting (A.9) and (A.10) into the definition expression of the output SIR yields

(3.9). From (A.6) and (3.6) it follows that
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. T IVT’TCIQ
b[RIw(i)=vD.wo(i)=Wa “WIiTw,
Q
3 |V-‘.’Tc|r1

"/'b(]- — VVTC)"Q_ [>V-VTC

b IV-‘-’TC|Q
Je o wlc

- (a3
Ta IWTCI

Tz

o min W] sign(wTc)
Y ]\7?/'7}:]0‘-l sign(wlc)

Je

a.min

(A.LL)

which leads to (3.10).
When a = 2. by using (A.8) and (3.7). (3.10) becomes

SIRp = ———w'c

which reduces to (3.11).
Derivation of Probability of Error

By the assumptions made in Chapter 3. the test statistic Z(7) is a SaS random

variable. The conditional location parameters are given by

fo = E[Z(i)|b(i) = +1.by(i)]

= w(i)Tc+ w(i) j (i) (A.12)
and

B = E[Z()|b() = ~Lb,(0)

= —w(i)Tc +w(i)js0). (A.13)
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Let Zo(l) = Z(i)|b(i):»{»l.b1(i)— /.—l.o and Z-l(’:)|b(i)=-l.b_;(i) = Z(I) —ﬂl' Then for 1 < « < 2

the dispersion 7 (;, is given by

Tay = [Zo(i).Zo(0)], = [Z:(2). Z1(9)],

From (3.5) and (A.14) we obtain
T2y = Ja(W(i)) = %(L — w(i)Te)(l = w(i)Te)<*™> — w(i) T, wa(i)

for 1 < a <2. vy, corresponding to the MD solution is thus given by

TZeymin = Tz (W(i) = wiw, (i) = w,)
= ]f(:mm - sb(l - &rc)(l - &QTC)<0-1> - “-’TFJ\;/Q.

Substituting (3.6) into (A.16) yields

. —_ o _In =T .\ _ <IT &
'Z{z1).min — ]rt min ]/2 mln( - W C) w rJW’!
_ a T . =Tr =
= Jlan - Wec—w[w,.
Rearranging (3.10) in terms of .J¥ . and substituting it into (A.17). we get

. Ty (=T
! Z(1).min SIR (W C)
max

— (H|® _ =T
= b[Rmulwc | w [ ;w,

<a-1> | WTC _ i,Tr’j“—,Q

forl<a <2

When a = 2.

- \2
o -y (€ = f10)
fa(§: Y20y Ho) = ———=exp |— 572
‘)7{0‘2.
=TT Z3)

(A.14)

(A.13)

(A.16)

(A.LT)

(A.1R)

(A.19)
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where 022(;') = 2¥3(,- Substituting (A.19) into (3.12) thus yields

P.(bs(i)) = / - er[ (\ /-‘0) :ldc
~nag Z(t)

o
o(£=)
vV 920
w(i)Tc + w(i) j,(7)

= Q -
( V22w )
-0 ( w(i)T(c + i, (i))
V2wW(i)TT ,wa(i)

where Q(r) = -\7[; [ e~**/2dt. Hence we obtain (3.13).
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