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ABSTRACT 

Multiple-access interference (\LAI) suppression techniques in DS/CD\L\. systems 

usually assTime additive Gaussian noise. Minimum mean squared error (\IMSE) detec­

tors are near-far resistant in additive Gaussian noise channels. But the additive channel 

noise in many communication channels is often non-Gaussian and impulsive. Signal de­

tection in non-Gaussian impidsive noise is traditionedly focused on single-user channels. 

Symmetric alpha-stable (SaS) probability density functions can accurately model kirge 

classes of impulsive noise. The MMSE performance criterion cannot be used for SaS 

processes with 0 < a < 2 since they have infinite variance. This dissertation considers 

the problems of MAI suppression for DS/CDMA systems in the presence of additive non-

Gaussian impulsive channel noise modeled as a SaS process with 1 < a < 2. These \L\I 

suppression techniques help combat the near-far problem. First, the minimum dispersion 

(MD) criterion is introduced to suppress MAI. Linear MD defection can be viewed as 

expansion of the concept of the MMSE detection for Gaussian multiple-access channels 

to SaS non-Gaussian impulsive multiple-access channels. The linear MD detector is 

implemented adaptively using leiist mean p-norm (L^^tP) algorithm. The performance 

of the linear MD detector is analyzed in the context of a SaS process. Simulation re­

sults indicate that the adaptive MD detector shows good near-far resistance. Next, this 

dissertation presents a MAI suppression method using the least Lp-norm criterion. The 

iteratively reweighted least squares (IRLS) algorithm recursively approximates the least 

Lp-norm solution from weighted norm<d equations. Simulation results show that the pro­

posed detector provides remarkable performance improvements over the adaptive MD 
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detector in a wide range of near-far situations. The proposed detector has much better 

near-far resistance than the adaptive \ID detector. Fineilly. fuzzy hybrid detector com­

bines the adaptive MD detector and the hard-limiting matched filter (HL^-IF) detector. 

The HL^MF detector performs well when the additive impulsive noise significantly dom­

inates over MAI. Simulation results indicate significant performance improvements over 

the adaptive MD detector alone in impulsive noise-hmited environments. When MAI 

dominates, the fuzzy hybrid detector nearly has the same performance as the adaptive 

MD detector. 
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CHAPTER 1 INTRODUCTION 

1.1 Problem Statement 

Direct-seciuence code-division, multiple-access (DS /CDMA) is one of various populiir 

multiple-access techniques in digital wireless communications. CD^'LA is cdso referred 

to as spread-spectrum multiple-access (SS\LA) or spread-spectrum communications [i]. 

In DS/CD\LA. systems, users can simultaneously access the same channel using their 

distinct spreading codes, even though all users" signals overlap in time and frequency. 

The receivers of conventional DS/CD\L\ systems consists of a bcvnk of matchetl filters, 

each of which is matched to each of the users" spreading codes. It is well knowTi that the 

con^'entional linear matched filter (^IF) or correlation detector is optimal in the sense 

of minimum probability of error in an additive white Gaussian noise (AWGN) channel. 

For DS/CDMA systems, this is the case for a single-user channel without interfering 

users in the presence of AWGN. The conventional \IF detector was essentially regarded 

as optimum due to the belief of many workers in spread spectrum that multiple-access 

interference (MAI) is acciurately modeled as a white Gaussian random process by the 

Central Limit Theorem [2]. [3]. The fact that the \LAI can not be tmy longer Gaussian 

in multiple-access channels motivated the development of mutiuser detection. Poor 

demonstrated in 1980 that the Gaussian approximation is completely useless in many 

practical situations {e.g. in near-far environments). He improved the performance of 

the conventional MF detector in multiple-access channels biised on techniques from both 

minimtix robustness and non-Gaussian sigTial detection [4], [2]. [3]. 
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Since the spreading codes are not completely orthogonal, the \IAI exists at the 

output of each of the \IF's in conventional DS/CD^LV systems. The amount of MAI 

increases as the number of interfering users increases, and/or the received signal powers 

of the interfering users increase. Especially, when there exist interfering users with high 

powers, the strong \LAJ dominates over a weak received signal, which results in a near-

far problem. The conventional \IF detector is highly sensitive to the near-far problem. 

The near-far problem is thus a limiting factor to the capacity and performance of the 

conventional DS/CDMA systems in spite of the fact that spread spectrum, by its very 

nature, is an interference-tolerant modulation [5]. The performance of the conventional 

\IF detector is acceptable if the received signal powers are not too dissimilar and the 

cross-correlations of the spreading codes are low enough [2]. [3]. 

In order to mitigate the effect of \LAJ on the conventional \IF detector, various re­

search efforts have focused on several areas such as code waveform design, power control, 

forward error correction (FEC) codes, and sectored/adaptive antennas. If the spread­

ing codes are completely orthogonal, there exists no MAI in synchronous DS/CDMA 

systems. However, since some degree of asynchronism is inherent in most practical 

channels due to their path delays, it is not possible to design complete orthogonal codes 

over all possible delays (see [ij and references therein). Power control is currently used 

to solve the near-far problem in DS/CDMA systems based on the IS-95 standiird [6]. [7]. 

[8]. [9|. The power control method equalizes the received signal powers and therefore 

mitigates the near-far effect. 

Above all. the most important approach to solve the near-far problem is MAI sup­

pression. This is also known as wideband interference suppression since the \LAI is 

wideband like wideband DS/CDMA signals. Note that narrowband interference sup­

pression is another area in DS/CD\LA systems. This narrowband interference occurs 

in overlaying systems during transitions between the old and new systems. For exam­

ple. the CDMA overlay or coexistence with the existent analog ceilukir system, ciilled 
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advanced mobile phone system (A_MPS) results in narrowband interference. The nar­

rowband interference is beyond the scope of this work. A reader is referred to [10], [11]. 

[12]. [5] and references therein for details. 

This dissertation will focus on wideband interference or \LAI suppression. For con­

ceptual clarity, it can be classified into multiuser detection and single-user detection de­

pending on its detection structure as in [5]. Multiuser detection is fiiUy centralized, while 

single-user detection is fully decentralized. In general, the single-user detection requires 

knowledge of only one user's (or desired user's) signal parameters such aa spreading code, 

delay, and power, but not that of the iaterfering users' parameters. The multiuser de­

tection reciuires knowledge of aU users' signals parameters. The delay and power of each 

user are usucvlly estimated at the receiver. All users' spreading codes can be available 

in base stations, but they are not easily arailable in mobile stations without receiving 

the spreading codes from base stations. The distribution of that information may be 

vulnerable to a wireless channel seciu-ity problem. The complexity of the single-user 

detection is much lower than that of the multiuser detection. Single-user detection is 

more favorable in terras of its relative simplicity of implementation and wireless chan­

nel seciurity. Thus, the single-user detection may be more appealing to mobile stations 

rather than to base stations. In this work, we wiU focus on single-user detection. This 

work is the communication problem that takes into account the effects of both \LA[ and 

additive impulsive channel noise for increasing the system performance and capacity. 

1.2 Literature Review 

This section briefly reviews several \LAJ suppression techniques. The residts are 

primarily simimarized from two survey papers [l|. [5]. The reader is referred to [2]. [3|. 

[13], [14], [1]. and [5] for detailed information on each scheme. Figure 1.1 shows an 

organizationcd chart for MAI suppression in DS/CD^(LA systems. 
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Multiple-Access interference Suppression 

I I  

MuKfuser Detection Singie*User Detection 

— Optimum 

^  Suboptimum 

1 

— Optimum 

^  SuOoptimum 

Linear 

1. -__n t I I i L 
Oecorrelating MMSE SiC Multistage (or PiC) Oeosion-ieedbacic MMSE Blind Adaptive 

Figure i.i Organizational chart for MAI suppression in DS/CD\LA. sys­
tems. 

1.2.1 Multiuser Detection 

Verdu [15] proposed and ajialyzed an optimum multiuser detector with minimum 

probability of error emd near-far resistance. The detector consists of a bank of MF's 

followed by a maximum likelihood sequence detector. The optimum multiuser detector 

requires knowledge of the spreading codes, delays, and powers of all active users. The 

computationcil complexity increases exponentially with the nimiber of users. Since the 

detector is too complex to be used in practical DS/CDMA systems, most research efforts 

hcive focused on the development of suboptimum multiuser detectors which have good 

near-far resistance, lower computational complexity, cmd low probability of error. Most 

suboptimum multiuser detectors can be classified into one of two categories: Hnear and 

nonlinear [I]. 

A class of linear suboptimum multiuser detectors includes decorrelating and minimum 

mean squared error {MMSE) detectors. This class of detectors applies a linear mapping 

to the soft output of the conventional \IF's to reduce the \L\I seen by each user [l]. 

Lupas and Verdu [16]. [17] introduced the decorrelating detector with the same near-far 

resistance as the optimum multiuser detector. It completely ehminates the MAI at the 

expense of noise enhancement. It provides significant performance improvements over 

the conventional MF detector under most conditions except when the MAI is relatively 
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low and the background noise is relatively high [3]. [17]. [I]. The decorrelating detector 

requires knowledge of the spreading codes and delays of all active users, but does not 

require knowledge or estimates of the received signal powers of all active users. This 

detector is analogous to the zero-forcing equahzer which is used to completely eUminate 

inter-symbol interference (ISI) [I]. The computational complexity increases linearly with 

the munber of users. 

Another linear multiuser detector is the MMSE detector [18] which takes into account 

the background noise. It requires knowledge or estimates of the received signal powers 

of aU active users. Thus, the \EVISE detector generally has better performance in terms 

of probability of error than the decorrelating detector. This detector is exactly analo­

gous to the \CVISE linear equalizer which is used to combat ISI. The MMSE detector 

strikes a balance between complete MAI elimination and noise enhancement [ij. As the 

background noise goes to zero, the performance of the MMSE detector converges to that 

of the decorrelating detector, while the performance of the MMSE detector approaches 

that of the conventional MF detector as the noise gets very large, or the MAI gets very 

small [I8j. [13], [1]. Since the performance of the MXISE detector depends on the powers 

of the interfering users [18], there is some loss of near-fax resistance comparing to the 

decorrelating detector [l]. 

A class of nonUnear suboptimum multiuser detectors is divided into three classes such 

as auccessive interference cancellation {SIC) [19], [20]. [21], multistage detection [22] (or 

parallel interference cancellation {PIC) [23]). and decision-feedback detection [24]. [25]. 

The basic principle is to subtract out some or all of the \LAI by estimates of the \LA[ at 

the receiver. These detectors are similar to decision-feedback equalizers used to combat 

ISI. The detectors have near-far resistance. These detectors requires knowledge of the 

spreading codes of all active users and estimates of all active users' parameters such 

as amplitudes and delays. They provide significant performance improvements over the 

conventioniil MF detector. The computational complexity increases linearly with the 
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number of users. A reader is referred to [i] and references therein for a number of 

v-ariations on these types of detectors. 

1.2.2 Single-User Detection 

Poor and Verdu [26] investigated optimum decentralized detection for asynchronous 

Gaussian multiple-access channels by taking into account the structiure of the \LAI. 

The detection is the optimum one-shot detection where the detection of each symbol 

is based on the received signal only in that symbol interval. Detection is modeled 

by the binary hypothesis testing problem and the optimum (in the sense of maximum 

likelihood/minimum probability of error) decision is based on comparing the likelihood 

ratio to a threshold. 

Aazhang, Paris, and Orsak [27] proposed two detection schemes such as single-user 

and multiuser for asynchronous and synchronous Gaussian multiple-access channels us­

ing multilayer perceptrons. These detectors approximate the optimum multiuser [15] 

and single-user [26] detectors. Mitra and Poor [28] also provided an implementation of 

the optimal single-user detector for synchronous Gaussian multiple-access channels using 

the radial basis function (RBF) network. Nevural network techniques such as super\ased 

clustering and A;-means clustering adaptively determine unknown system parameters in 

unknown or changing communication environments. The adaptive RBF network pro­

vides near optimal performance and is robust in realistic communication environments. 

Since the RBF network with the full user set recjuires 2^ neiu-ons for K users, it may 

not be desirable if there axe a significant number of active users. But it provides strong 

performance with reduced user set. 

Since a class of the optimum single-user detectors may require knowledge of the inter­

fering users, their complexity may be relatively high. Thus, adaptive single-user detec­

tors using the \EMSE criterion have been introduced for MAI suppression in DS/CD\LA 

systems [29]. [30]. [31]. [32]. [33]. [34]. [35], [36]. [37]. [38]. [39], [40]. [41], The adaptive 
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detectors offer significant performance improvements over the conventional MF detec­

tor and near-far resistance in AWGN channels. The adaptive detectors do not require 

knowledge of the interfering users" parameters such as spreading codes, delays, and pow­

ers. but they require training secjuences for their adaptation to changing or imknown 

communication environments. Adaptive single layer perceptrons using the MMSE crite­

rion were considered to suppress MAI [39]. Their convergence analysis were performed 

Ln a multiuser commimications environment and the performtmce of various algorithms 

such as least mean sc[uare (L^^IS). MF. and decorrelating was compared via computer 

simulation. An adaptive correlator using the MMSE criterion was proposed to suppress 

ncUTOwband interference and mitigate multipath [42]. The performance of the adaptive 

correlator is nearly comparable to that of a RAKE receiver with perfect channel informa­

tion in the presence of multipath only. The RAKE receiver degrades significcmtly. while 

the adaptive correlator stiU performs well in the presence of both narrowband interfer­

ence and multipath. The adaptive MMSE detectors can be attractive not only in bcise 

stations but also in mobile stations. Even though the adaptive MMSE detectors primar­

ily aims at combating the \LAI. the previous works of [43] and [42] implicitly suggests 

that those detectors can simultajieously treat multipath and narrowband interference as 

well as MM [38], 

Bhnd adaptive interference suppression for near-far resistant CDMA was proposed 

in [44]. It rec[uires only knowledge of the desired user's spreading code and associated 

timing. The received amplitudes do not need to be known or estimated. The criterion is 

to minimize the mean output energy, which is ec^ui'valent to minimizing the MSE without 

training sequences. 
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1.3 Motivation 

There are several factors that motivate us to consider the problems of \LAI suppres­

sion for DS/CDMA systems in non-Gaussian impulsive channels: 

• Non-Gaussian impulsive channel noise models - The existing detectors for 

MAI suppression have mainly been considered under the assimiption of additive 

Gaussian noise. Many communications links are often corrupted by non-Gaussian 

impulsive noise which is generated by either natiural or man-made noise [45], [46]. 

[47], [48], [49|. [50|. Man-made electromagnetic noise in lu-ban mobile-radio chan­

nels has a noise density in which the tails decay at a rate slower than that of the 

Gaussian noise density [45j. [51]. Therefore, more acciurate noise models need to 

be considered to avoid a significant performance degradation. Many models of 

non-Gaussian impulsive noise can be divided into two classes of models: physical 

models such as Middleton clciss A. B. and C [45]. [52]. [53]. [54] and empirical 

models such as an e-mixtiure [48]. These models have widely been used for sig­

nal detection in impulsive environments [55]. [56]. [57]. [49]. [58]. [51]. It was 

shown that a general class of man-made and natural impulsive noise indeed has a 

symmetric stable distribution under appropriate a.ssnmptions on the spatial and 

temporal distributions of noise source eind the propagation conditions [59]. [60]. 

Recently, symmetric a-stable (SaS) noise models have been used in [61]. [62]. [50]. 

A mixtiure model of Gaussian and SaS noise was especially taken into account in 

[61] and [62]. Binary detection in a mixtiure of Gaussian and Q-stcible noise ^\-as 

investigated in [61]. In [62]. the mixtme noise was used to model the interference of 

frec[uency-hopping (FH) spread-spectrum (SS) radio networks in a Poisson field of 

interfering users [62]. A reader is referred to Section 2.5 for more description of im­

pulsive noise models. In this work, we model the additive non-Giiussian impulsive 

noise cis a SaS random process [60]. [63]. 
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• Linear estimation within the framework of a SaS process [60], [64]. [65] -

Since the second moment of a SaS noise process is not finite for 0 < o: < 2. the 

MMSE criterion is not v-alid anymore. The Tninimum dispersion (MD) criterion is 

addressed in linear theory of stable processes. Under the \ID criterion, the best 

estimate of a SaS random ^-ariable in the linear space of observations is the one 

that minimizes the dispersion of the estimation error. Note that the dispersion 

of a stable random variable plays a role ajialogous to the variance. .A. reader is 

referred to Section 2.4 for details of SaS random process. 

• Interference suppression in non-Gaussian impulsive noise channels - Lots 

of research efforts have made in the area of signal detection over a single-user im­

pulsive noise channel (see [49]. [58]. [66] and references therein for details). In 

[49]. performance of discrete-time linear and nonlinear correlation detectors \\-as 

studied in the presence of both \LAI and additive impulsive noise. When the \LAI 

dominates over the additive impulsive noise, the conventional linear correlation (or 

MF) detector stiU suffers from the near-far problem like in the Gaussian channels. 

But the problem of MAI suppression for DS/CDXLA. systems in the presence of 

additive non-Gaussian impulsive noise has not been given much attention. As far 

cis we know, there have been few works [67]. [68]. [51]. [69] on \LAI suppression in 

additive non-Gaussian impulsive channels. Mandayam [67]. [68] proposed adaptive 

linear detection to minimize the average probability of bit-error using an infinites­

imal perturbation analysis (IPA) based, stochastic gradient aigorithm. In [51]. 

detection of spread-spectrum signals in a nuiltiuser environment with additive im­

pulsive noise was considered to determine the presence of a new user and integrate 

knowledge of this new user into the multiuser detector. In [69]. a near single-user 

performance of the HLMF detector was achieved, by incorporating a sgn func­

tion and using the steepest descent method for multiuser detection. Cheng, Shen. 
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and Nikias [TOj developed a family of optimal £^''^^-metric interference estimators 

for arbitrary i.i.d. interference sequence and any discrete-type complex measitre-

ment noise (or signed) sequence. The proposed interference estimators were tested 

^na computer simidation under the assumption that the additive interference is 

modeled as an autoregressive (AR) sequence driven by the SaS process and bi­

nary random secjuence. In [10], [11]. and [12]. nonlinear filtering techniques were 

introduced to predict an narrowband interference in the presence of additive non-

Gaussian noise. Rusch and Poor [12] modeled the CDMA signal as non-Gaussian 

noise in the interference suppression process. Garth fmd Poor [11] considered the 

effect of non-Gaussian noise corrupted by impulsive background noise as well as 

the CD\L\. signal. Even if the interference suppression techniques given in [11], 

[12], and [70] axe considered in non-Gaussian impulsive environments, they mod­

eled the relevant interference as a sinusoidal or an AR signal and therefore it is 

not clear that these technic[ues will still be effective in real situations, where the 

rele\-ant interference is a digital commimications or CDMA signal. The rele'V"ant 

interference is quite likely to be poorly modeled as a sinusoidal or an AR signal. 

Multiuser detection theory was first applied to solve this modeUng problem of the 

narrowband interference suppression [71]. WTien the narrowband interference is 

indeed a digital conununications signal, the existing techniques are less effective 

than those based on the multiuser detection theory. 

1.4 Objectives and Expected Contributions 

The piu^ose of this work is to consider the problems of MAI suppression for eisyn-

chronous binaiy phase shift keyed (BPSK) DS/CDMA systems La the presence of addi­

tive non-Gaussian impulsive noise modeled as a SaS process. The interference suppres­

sion techniciues help mitigate the near-far problem. The expected contributions of the 
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proposed research includes: 

• Elxpanding the concept of the MMSE \L4I suppression for Gaussian multiple-

access channels to SaS non-Gaussian impulsive multiple-access channels. 

• Presenting MAI suppression techniques, for DS/CD\LA systems in additive SaS 

non-Gaussicin impulsive channels, such adaptive MD detection, least Lp-norm 

detection, and fuzzy hybrid detection. 

• AnaJv-zing the performance of the linear MD detector in the context of a SaS 

process. 

• Assessing the performance of the proposed detectors by extensive Monte Carlo 

simulation. 

1.5 Dissertation Organization 

Chapter 2 presents some preHminarj' results used throughout this dissertation. It 

includes a mathematical description of a system model for a conventional DS/CDMA 

system, an illustration of the effect of MAI on conventional discrete-time MF detector, 

a brief summary of the classical theorj- of stable processes, and a review of both channel 

noise models and optimum detection based on Bayes rule. Chapter 3 through Chapter 

5 consider the problems of \LAI suppression for DS/CD\LA systems in the presence of 

additive non-Gaussian impulsive noise modeled as a SaS process. Chapter 3 presents 

a linear minimum dispersion (MD) detector. It includes a performance analysis of the 

linear MD detector in the context of a SaS process. Chapter 4 introduces a least 

Lp-norm detector. Chapter 5 describes a fuzz\' hybrid detector. These detectors for 

MAI suppression axe to combat the near-far problem. Simulation results axe included 

at the end of each of the chapters. Finally. Chapter 6 concludes the dissertation and 

reconxmends futiure work. 
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CHAPTER 2 BACKGROUND 

In this chapter, we introduce useful preliminary results used widely throughout this 

dissertation. In Section 2.1. we describe a system model for a conventioncd DS/CDMA 

system to be considered throughout this dissertation. The system model uses the as­

sumptions made in [49]. [58] and the approaches given in [^M]. [49]. and [58]. Section 

2.2 provides simulation environments and some simulation results on the system model. 

Section 2.3 illustrates the effect of MAI on the conventional \IF (or correlationj detector 

using discrete-time s\'stem model. Section 2.4 presents a brief summary* of the classical 

theor\' of stable processes. This includes the stable distribution and characterizations 

find statistical properties. For further information, a reader is referred to [60]. [6-1]. and 

[63]. Next we briefly present an introduction to linear theory of stable processes. These 

materials will be primcirily employed in Chapter 3. Most of the prehmincirv' results cure 

extracted from [64]. [60]. [63]. [72] and [65]. Section 2.5 discusses noise models. Section 

2.6 describes optimum detection bcised on Bayes rule. 

2.1 System Description 

Consider an asvTichronous binary phase shift keyed (BPSK) DS/CDMA system with 

K users. The svstem model is shown in Figure 2.1. K users share the channel which u  O  

consists of K paths. Each path has a unity path gain and some fixed path delay. 

The transmitted signal for the ^•th user is given by 

Sk{t) = \/2^bk{t)ck{t) cos{uj,:t + Ok), k = i.2. - • • . K (2.1) 
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where Pk and dk are the transmitter power and carrier phcise. respectively, u.',. is the 

carrier frequency. bk{t) is the baseba^nd signal generated by the binary data symbol 

6 { —l.+l}.—oc < i < oc. and Cfc(i) is the spreading signal generated by the 

spreading sequence with a processing gain N. It is assumed that 

bk{t) and Ck{t) are polar sigTiais of duration T and T^. respectively. Then they are of the 

forms 

x-

h W  =  Y ,  -  i T )  ( • > . • > )  
i=--x: 

and 

c , ( t )  =  Y ,  -  " T , )  (2.3) 
n = - -x: 

where ^ ">"1} • PT(0 PtA^) '^he unity rectangular pulses 

of duration T and T,-. respectively. Assimiing T = NT^. there exists one code secjuence 

per data svTnbol This assumption is not usually required 

for a DS/CDMA s\'stem to function properly, but is essential for the system studied in 

this dissertation cis Ln [38]. The residting received signal for a given receiver is giv-en by 

K 

'•(0 = ~ 
fc=i 

K 
= ^ ̂/Wi^bkit - rk)ck{t - Tk) cos{uj,.t -I- 0^) + L'it). k = .K (2.4) 

k = l 

where L'{t) is the additive non-Gaussian impulsive noise modeled as a SaS process with 

zero location parameter /x. Vk is the time delay due to the channel propagation delay and 

the lack of time synchronism between the transmitter and receiver, cmd 0^. = Ok — ^',:Tk-

After the front-end chip-matched filtering, the received signal is sampled at the chip 

rate 1/7^. The signal samples over a sjTnbol interval T can be considered as a signal 

vector. Without any loss of generality, we can assume that the user of interest is user 

number 1. who is referred as the desired user, and that the receiver is synchronized to 
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this transmitter. Hence only relative time delays find carrier phase angles need to be 

considered. The nth sample over /'th symbol interval at the output of the chip-matched 

filter is given by 

for Q < n < N — I. We can assume = 0 and ri = 0 due to the above assumption. 

Furthermore, there is no loss of generahty in assiuning Of. E [0.2") and E [0. 7"). 

2 < k < K since we are concerned only with carrier phase shifts modulo 2~ and time 

delays modulo T . 

Figttre 2.2 shows relative time delays of asynchronous CDMA systems. Without 

loss of generality, we order the users such that 0 = ri < < Tf^. Since we 

are interested in a sj'mbol-by-syrnbol detection through this dissertation, we need to 

consider the received samples within the single symbol period, i.e., /'th symbol interval 

of T. During this symbol interval the fcth interfering spreading sequence Ls modulated by 

the data symbol — 1) . for t E [0. ri], and by the data svTnbol . for t E [r^. T\. 

For 2 < k < K. the relative delay for the A:th user is written cis r^. = rrif-T,. + Sf. where 

m,fc is an integer between 0 and — 1 and 0 < < T,. (see [34] and [58]). When is 

zero for every k. the asynchronous system reduces to a synchronous svstem. 

We assume that the integrator has a scaling factor of y^2f PijT,. associated with the 

desired user. Then from (2.4) and (2.5). it follows that at time t = IT 

in+ l)T^^-rl 
(2.5) 

JnTc+Ti 

r„(?:) = 6(')(04^^ +5^ 
/. •» 

(2.6) 

for 0 < ri < :V — 1 where 

'•'n(') = i'{nTc) = i : { t )  COs{u! r_ t  +  (Di )d t .  (2.7) 

- c [ t \ { n : m k . 6 k )  

n- mi; - l + N • Sk • ^0<n<mfc • {T,: — Sf;) • ^'o< n < m f c - l -  ( - - 8 )  
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Figure 2.1 Asynchronous BPSK DS/CD\LA. system. 
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Figure 2.2 Relative time delays of asynchronous DS/CDMA systems. 
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and 

cf\n) = c\'^'{n:mk.Sk) A aW 

— ^'n-mk-l ' • ^;V-l>n>Tnfc + l + ~ ̂ k) ' 'J'iV-l>n>Tnfc- (2-9) 

Here 'i's(n) is the characteristic function of the set S{n). i.e.. 

Let 

^5(n) = 
»&s( r . )  = 1 if ra 6 5 

'^'5(n) = 0 Otherwise. 

(2.10) 

-W 4 c\t\im.k.6k) 

= c|^'i(0: mfc.<5fc).^|^\(l; rrik.Sf,). • • - 1:171^.61,) E . (2.11) 

4 c:^-)(m,.<5,) 

= [cf >(0: Ari,.^fc).rf'(1: • • -.c^^KiKN - 1: m,.S,)] ^ . (2.12) 

c(i) 4 ,.(!) ,.(i) 
' 0  •  

, . ( i )  
• -1 

r(0 = [' ' 'o(0- ' ' i( / ' )----  -^.v-iCOI e  • 

(2.13) 

(2.14) 

and 

v(0 -  b''o(0- '- ' i lO- • • •  • 'Av-i(0]^ ^ (2.15) 

Then, in vector-form. (2.6) can be written as 

K 
1 LP^ 

k=-i 
{i) = Y cos(0fc) 6(*-"^(/;  -  i)c,^!\  + 6^^">(?:)cf^ + v(o (2.16) 

where r(z) is the received signal vector at time t = iT . is the spreading sequence 

vector of user 1 at time t = iT . v{i) is the additive noise vector at time t = iT . It is 

usually assumed that the binary data bits "s axe independent, equiprobable and 

have zero mean. Note that c|^\(mfc.(5fc) and cf'\mk.Sk) are linearly independent and 

are modulated by independent, different bits — 1) euid 6^^'^(z) . so that the fcth 
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asynchronous user actually contributes two interference vectors diuring a single sjrmbol 

interval. We can therefore view the asynchronous system as the equivalent synchronous 

system with additional K fictitious users, or interferers. as shown in Figure 2.2. The 

total number of interference vector can range from K — I to 2{K — 1) according to the 

relative delays of the actual K — I interfering users (see [34]). Suppose that 

j(0 = 5^^y^cos(0fc) 
/:=2 V L J 
L - l  

;=i 

j (,:) 4 J ~ for I < Z < /v' - 1 

[  ^  P i -  K  ^ ^ for K  < L <  2 { K  -  L )  =  L  -  I .  

(2.19) 

Note that j/(z) is a fimction of all random parameters such as powers, phase angles, 

delays, symbols, and associated spreading codes (i.e., other users" spreading codes and 

their path delays). It is clear that j/('') are generated by L — 1 interference symbols. 

b,(i) = (6y'.6f.....6S'-") where 

... I — 1) for 1 < Z < K' — I 
6?^ = <^ ~ " (2.20) 

I for K  < 1 < 2 { K  -  I )  =  L  -  1. 

Then the received signal vector r(?;) at time t = iT is given by 

r(z) = 6^''(?;)c^'^ + j(z) + v(z). — oc < i < 2C (-•-!) 

where j(*) = [7o(i)-''' We will use (2.21) as the discrete-time received 

signal vector at time t = iT throughout this dissertation. 

For mathematical tractabUity. throughout this dissertation, the noise samples given 

in (2.7) are assumed to be statistically independent tis in [58] jmd [49]. This assumption is 
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valid when the noise process r ( t )  is white and Gaussian. When the noise process is white 

but not Gaussian, the noise samples axe imcorrelated but not necesscu-ily independent 

at the appropriate sampling rate after the low-pass filtering of integrator shown in (2.7) 

[57], [58], [49]. 

2.2 Simulation Environments 

Next, we present simulation environments and some simulation results such as \LAI 

and additive noise samples generated by oiu: system model. Relevant simulation results 

corresponding to each of the interference schemes will be presented at the end of the 

following chapters. We consider an asynchronous BPSK DS/CD\LA. system with A.' = 

5 users, unless stated otherv\Tse. We use an m,-sequence of length .V = 31 chips cia the 

PN-spreading sequence. The additive SaS noise process is assumed to have a location 

pjiirameter. /j,. of zero. We consider the cases of the characteristic exponents a = L.l. 

1.5. ajid 1.9. The reader is referred to [73| for simulation of stable random variables. 

The detector of the desired user is assumed to have perfect synchronization for timing, 

carrier pha^e, and carrier frequency. The relative time delays and ciurier phases of 

the interfering users fire assumed to be uniformly distributed. The power ratio of the 

interfering users to the desired user (PRID) is defined as 

p 
PRID = (2.22) 

" I 

where is the transmitter power of user k. Pi is set to 0.3 watt. Among K users, 

only the transmitter powers of strong interfering users are varied and the transmitter 

powers of the other K — — 1 interfering users are equal to that of the desired user. 

These simulation environments will be used throughout this dissertation, unless stated 

otherwise. To obtain reliable bit error rates for all simulation conditions except for very 

small \'alues of BER (e.g. small PRID values of HL\IF detectors), we choose each s^miple 
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size (or number of transmitted bits) of Monte Carlo simulation so that each normalized 

accuracy of about 10 % may be assured. The normalized error (NE) [74] is given by 

NE = (2.23) 
s/^',avPe 

where is the estimate bit error rate and N^ap is the sample size of Monte Carlo 

simulation. 

Figure 2.3 shows the amplitudes of the MAI (A' = 5 and = 2) samples after the 

front-end chip-matched filtering for different values of PRID. Fig"ure 2.3 (a) represents 

the amplitude of the MAI with PRID = 6.021 dB. i.e.. for equal powers of the interfering 

users. It is clear that the amphtudes of the \L\I becomes larger as the PRID increases. 

Figure 2.4 and Figure 2.5 show the amplitudes of the additive SaS samples after the 

front-end chip-matched filtering for different values of characteristic exponent a and 

dispersion 7. These plots denote that the additive noise become more impulsive as a 

gets smaller. 

2.3 Conventional Matched Filter Detector and MAI Effect 

Figiu"e 2.6 shows a generalized correlation (GC) detector [75]. The test statistic is 

writ ten as 

; V - 1  

Z ( i ) c c  =  ̂ 9 { r . ( i ) ) 4 >  (2.M 
n = 0  

where ^ —*• 5)? is a memory less nonhnearity. For example. ̂ (r„(z)) = r„(/) corresponds 

to a linear correlcition (LC) or matched filter (\IF) detector whose test statistic reduces 

to 

r„(i)4" = (r(i).c"') = rCOV !l'2o) 
n — 0  

where (r(t).c^'^) represents an inner product. For single-user AWGN channels, the 

MF detector is optimum cmd offers a sufficient statistic, while the MF detector is 
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Figure 2.3 Amplitude of the \LU! samples after the front-end chip-matched 
filtering with K = o and = 2: (a) PRID = 6.021 dB, (b) 
PRID = 12.02 dB. (c) PfUD = 18.02 dB. (d) PRID = 24.02 dB. 
(e) PRID = 30.02 dB. (f) PRID = 36.02 dB. (g) PRID = 42.02 
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www.manaraa.com

21 

Dispersion s 0.2 

50-

3 0 
-50 

•too' 

Alpha 3 1. T 

0 100 200 300 400 500 600 700 800 900 lOOO 

0-

J 
, Alphas 15 i 

3- ii J 
-20 L 

0 TOO 200 300 400 500 600 700 300 900 1000 

Alpha = 

0 100 200 300 400 500 600 700 aoo 900 IQOO 
Time 

Figure 2.4 Amplitude of the SaS impulsive noise samples after the 
front-end chip-matched filtering with 7 = 0.2: (a) a = 1.1. 
(b) a = 1.5. and (c) a = 1.9. 

suboptimal for multiple-access channels regardless of the additive noise density [58]. 

g{T~n{>-)) = corresponds to a hard-limiting correlation (or. hard-limiting MF. 

sign correlation, sign) detector. It is a locally optimum detector for a single-user Lapla-

cian noise channel [75]. 

Next, we describe the effect of \LAJ on the test statistic of the MF detector. Substi­

tuting (2.21) into (2.25) yields 

Z { i )  LC = + j(0 + v(/;). 

= -I- + (v(0-c^'') 

= N • 6^'^ + -I- (v(f).c^'^).  (2.26) 

Again, substituting (2.17) into (2.26). we obtain 

Z{i )Lc  = A- • 6<" + E ̂  Va+('"'(0 (e™- , ( l )  

+ (v(0.c( '^>. (2.27) 
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FigTure 2.6 Generalized correlator (GC) detector. 

The first term of the right-hand side in (2.27) denotes the desired signed. The second term 

indicates the \LAI due to the interfering signals of other users. The last term denotes 

the inner product of the additive noise and the spreading code vector of the desired 

user. It is evident that the \LAI mainly depends on •^. K. and the cross-correlation 

between and The most dominant factor is ^ which can cause the near-far 

problem. Flence the \LAJ is a limiting factor for the conventional \IF detector. Assuming 

a synchronous system and Of. = 0 for simpUcity. (2.27) reduces to 

Z{i)Lc = -V • 6"' + (c'".c<">] + (v(i).c"') (2.-iS) 
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where the cross-correlation for the spreading codes is given by 

= i (---9) 
1^ 0 < < 1. ki^l.  

2.4 Theory of SaS Processes 

2.4.1 Definitions and Properties 

The theor\- of imi'variate stable distributions was essentially developed in the 1920s 

and 1930s by Paul Levy and Aleksander Yakovlevich Khinchine [63]. Classics of the 

theory include [76|. [77] [78]. Two ec[ui\.'alent definitions of a stable distribution are 

given as follows: 

Definition 1 .4 random variable X is said to have a stable distribution if for any pos­

itive numbers Ci and a-2. there is a positive number a and a real number b such 

that 

a i X i  +  a - i X - i  =  a X  +  b  (2.30) 

where and X2 are independent copies of X and the notation = indicates that 

the random variables aiA'i + a-iX-i and aX + b have the same distribution. That 

is. these random variables are said to be equal in distribution. 

A random variable X is called strictly stable if (2.30) holds with 6 = 0. A stable 

random variable X is called symmetric stable if its distribution is symmetric, that is. Lf 

X and —X have the same distribution. A svTnmetric stable random variables is strictly 

stable [63]. 

Definition 2 .4 random variable X is said to have a stable distribution if there are real 

parameters 0<a<2. —1<5<1. 7>0. and — oc < ^ < 3C such that its 
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characteristic function has the folloming form: 

^ [exp jljX] = exp { j n u j  -  7 [l -f j Jsign(u.-) k(u;. q)| } (2.3L) 

where 

tan^. if a ^ 1 
K{u.a) = ^ (2.32) 

|log|u.i. ifQ: = l 

L. ifu.->0 

sign(u;) = •{ Q. if u.- = 0 (•-^•33) 

— 1. if u-.' < 0. 

The parameters a. 3. 7. /j, are called the characteristic exponent (or stability index), 

symmetry' (or skewness), dispersion (or scale), and location (or shift) parameters, 

respectively. The parameters J. 7. fi are unique except that 3 is irrelevant when 

a = 2. These parameters are characterized as follows: 

a controls the distribution tj-pe. It measure the thickness of tails of the distribu­

tion. As a decreases, the tails of the distribution get heavier. A stable distribution 

with parameter a is often called a-stable. When a = 2 for emy 3. the distribution 

reduces to a Gaussian distribution, while when a = I tmd 3 = 0. the distribution 

becomes a Cauchy distribution. 

3 denotes the departiure from a symmetric distribution about p.. An a-stable dis­

tribution with 3 = 0 is sjTTimetric about /u and called symmetric a-stable [SaS). 

The SaS distributions belongs to an important subclass of stable distributions. 

The Gaussian and Cauchy distributions are both SaS. 

7 represents the range of likely values. It is analogous to the variance of the 

Gaussian distribution (a = 2). When a = 2. 7 equals a half of the VcU-iance of the 

Gaussian distribution. 
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• // denotes the shift from zero. For SaS distribution, it is the mean when 1 < a < 2 

and the median when 0 < a < L. A stable distribution is called standard if ^ = 0 

and 7 = 1. 

A stable probability density function (pdf) is given by taking the inverse Fourier 

transform of the characteristic function 

In genered. there do not exist closed-form expressions for the stable distributions except 

for the Gaussian (a = 2). Pearson (a = J = —1). and Cauchy (a = 1. J = 0) pdf's. 

But power series expansions of stable pdf's are available. The Gaussian pdf is given by 

where fi is the median. 

The main difference between the Gaussian and non-Gaussian SaS distributions is 

their taik. The .;?q5 pdf's have algebraic (i.e.. inverse powerj tails, while the Gaussian 

pdf has exponential tails. Thus, the SaS pdf's have heavier tails than the Gaussian pdf 

(a = 2) as shown in Figure 2.7. 

We will be concerned about SaS distributions throughout this dissertation. Next, 

we present some of the useful properties and theorems of SaS distributions. These are 

largely extracted from [60]. [64] and [63]. 

Theorem 1 (Geaeralized Central Liiriit Theorem) .4. random variable X is the 

limit in distribution of normalized sums of the form 

(2.34) 

1 f (or — u)^ 
f x i x : 2 . 0 . - f . f i )  = - ^ = e x p  

>/47r7 _ 47 

where 7 = |-Var(X). The Cauchy pdf is given by 

(2.36) 

5„ (2.37) 
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CLf 

«2 

Figure 2.7 Standard SctS probabUitv densitv functions for different valuse 
of Q [64|. 

where the random variables Xi.Xa.--- .Xn «re i.i.d. arid n —^ oc. if and only if 

is stable. 

This implies that stable distributions are the only possible limit distributions for 

sums of i.i.d. random variables. Note that if the X[s are i.i.d. cmd have finite variance, 

then the limit distribution is Gaussian. This is the result of the ordinary Central Limit 

Theorem. 

Theorem 2 Let K be a a-stable random variable with 0 < a < 2. Theti 

E [|X|^] < oc LfO<p<a. (2..'38) 

E ^ if p > Q. (2.39) 

If a = 2. then 

E [|X|n < oc for aU p > 0. (2.40) 

Hence for 0 < q < 1. a-stable distributions have no finite first or higher order 

moments. This excludes the use of statistical expectations: for 1 < a < 2. they have 
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the first order moment and all the fractional lower order moments (FLOM's) of order p 

where p < a: for a = 2. all order moments exist. In particular, all non-Gaussian stable 

distributions have infinite \'ariance. The FLOM's Cein be easily obtained by using the 

following Proposition L. 

Proposition 1 Let X be a SaS random variable with zero location parameter p. and 

dispersion 7. Then 

E [|X|^] = C{p. a)7" for 0 < p < a (2.41) 

where 

, 2'+'r(£±i)r(-p/a) 

av^(-p/2) 

depends only on a arid p. not on X. Here F is the gamma function defined by 

r(x)  =  f  f ' - 'e - 'd t .  (2.43) 
Jo 

Since SaS random variables with a < 2 have infinite second moment (i.e., varicince). 

the co\-ariance does not apply to SaS random variables. Instead, we use the covariation 

proposed in [60j. [60], [76]. [77], [78], and [79]. 

Definition 3 Let .XTi and X-^ be jointly SaS random variables with L < a < 2. Then 

the covariation of on (or with, or and) X-2 is defined by 

[.!C,.A',L = /.n-s.r""r(ds) (2.M) 

where S is the unit circle of and r(-) is the spectral measure of the SaS 

random vector X = (.X^^i.Xi). 

Here (O^"^ known as signed power which is defined as 

t^'^^ = \t\"'sign{t) (2-45) 

for any real numbers t and a > 0. We now fist some of the useful properties of the 

covariation. Suppose throughout that 1 < a < 2. 

XT 
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Definition 4 Let X and Y be jointly SaS random variables with 1 < a < 2. Then the 

covariation coefficient of X with Y is defined by 

X - ''I- ,-9 4m 

These definitions for the covariation and covariation coefficient are not very conve­

nient in practice since they require the calculation of the spectral measure F (•). This 

difficiilty can be avoided by using the FLOM's as illustrated in Lemma 1. 

Lemma 1 Let X and Y are jointly SaS. Suppose that the dispersion of Y is 7^. Then 

[X. K]„ = , for all 1 < p < a. (1-17) 

A.v.r = for iOll < p < a. (2.48) 

Property 1 (Additivity in the first argument) If .Vi. X-z. and Y are jointly SaS. 

then 

f .-v,+x,,n.  -  [X,, n.+[X,.  n.  • (2.«) 

Property 2 (Scaling) Let X and Y be jointly SaS. Then 

[a.\:.6V-|„ = a6«"-'=-[.\:.V'|, (2.50) 

for any real numbers a and b. 

Property 3 If X. VV and Y^ are jointly SctS and and Y-i are independent, then 

[ X .  K .  +  =  i x .  K,|„ + [A'. nL . (151) 
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Corollary 1 Although the covariation is linear in its first argument, it is in general not 

linear in its second argument. That is. 

+ a,X,. K|„ = a, [X^.Y^+a-, [A'j. V), 

and 

[-'c.v', + nL#[.'c.K,L + [.'c.vy„. 

Corollary 2 The covariation is in general not symmetric in its arguments. That is. 

[ X .  K|„ # [V-. X], . 

Property 4 If X and Y are jointly SaS and independent, then 

= 0. (2.52) 

while the converse is not true in general. 

Property 5 If K and Y are jointly SaS with a = 2 and zero mean, then 

[X. YU = IXKI = icoviXK). (2.33) 

where Cov(-) is the covariance defined for the Gaussian process. 

Proposition 2 Let Ui 's be independent SaS random variables with dispersions 7^. i = 

.n. Suppose X and Y are both finite linear combinations of Ui's: 

n 

X = Y^ailu. 

n 

Y = 
t=i 
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where 's and bi's are any numbers and all bi's are not zero. Then X and Y are 

SaS and 

[XXIo = 537.10.1". 
i=i 

n 

[Y.Y\„ = 
1=1 

[xr], = (2.54) 
t=i 
\  •  a - b - ^ ^ ~  \ _ Z^t=i 

-V.y iL 1^ ' {—.00 j 
E.= i 7. \bi\ 

Let Lrt be a linear space of jointly SaS random variables. When 1 < ct < 2. the 

covariation induces a norm on Lr^-

Definition 5 The covariation norm of X E with 1 < q < 2 is 

||A'L=([XA'|„)''- (2.56) 

Property 6 If X is SaS with i < a < 2, then 

ll-^IL = 71'". (2.57) 

where 7^ is the dispersion of X. 

2.4.2 Linear Estimation of Stable Processes 

Gaussian processes belong to a class of second order processes which have finite 

second order moments. Stochastic processes ^dth finite pth order moments cure called 

pth order processes. A class of stable processes includes the Craussian processes or the 

second order processes aa special examples. The linear estimation problem of stochcistic 

processes can be stated as follows: Let {X(i). t E 7^:^} be a stochastic process, where 

is a finite or infinite interval. Given a set of observations of a stochastic process {X(i). 
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t G Tob}. find the best estimate of an anknotun random variable Y from the linear space 

spanned by {X(i). t E T^b} [60]. This estimation problem is called either smoothing, 

Entering, or prediction according to the relationship between observation ending time 

and estimation time. 

Linear theory of second-order processes (Gaussian processes in particular) has been 

fiilly developed because the linear space L{X{t). t E T^} is a HUbert space. Under 

the minimum mean squared error (MX'ISE) criterion, the best linear estimate of the 

unknowTi V can be obtained by an orthogonal projection of V onto L{X{t). t E Tot} 

[60]. Minimum error dispersion Unear filtering for scalar symmetric stable processes was 

early presented in [80|. The development of the linear theory of stable processes has 

been hmited due to the fact that the linear space of a stable process is a Banach space 

when 1 < a < 2 and only a metric space when 0 < a < 1 [65]. [60]. Nevertheless 

much attention has recently been paid to the linear theory of stable processes and their 

appHcations. 

Linear Estimation nsing the IVID Criterion L e t  { Y . X { t ) . t  E T^b} be stable processes 

with 1 < a < 2 and L (X{t).t E T^b) be the linear space of the observations of the 

stablf prnrpss {X{^). t E T.j,}, where T.jj is an finite interval. Then, given the 

observations E T^b} . the linear estimate Y of Y is defined as the best ap­

proximation to Y in the linear space L {X{t).t E T^b)- i-£-- the random variable Y 

in L {X{t).t E Tob) such that 

Y -Y inf IIK-Zll, (2.58) 

or equivalently 

E 

for Q < p < a [65]. [60]. 

Y - Y  inf E[1K-Zn (2.59) 
ze£.(.v(t).ter„6) 
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(2.58) means that the best estimate K of the stable random variables Y in the linear 

space L E T^h) is the one that minimizes the dispersion of the estimation error. 

Note that the dispersion (or covariation) of a stable random variable with i < a < 2 plays 

an analogous role of the variance (or covariance) in the Gaussian case {a = 2). Since 

L £ Tob) is a Banach space. Y always exists and is unique for 1 < o; < 2 [81]. It 

is obtained by a metric projection of Y  onto the convex Banach space L  { X { t ) .  t  €  T ^ ) .  

For 1 < cv < 2. V is also uniquely determined [65j by 

Z . Y  - Y  = 0 for all Z € L { X { t ) .  t  E T^t) (2.60) 

or 

X { t ) .  Y  -  Y  - 0 for all f E Toh- : 2.611 

This is analogous to the orthogonality principle for the linear estimation problem of 

second-order processes. When a = 2. (2.61) is linear and thus a closed-form solution 

exists for Y. For a < 2. it is highly nonlinear and hard to solve for the estimate Y (see 

[601). 

2.5 Additive Non-Gaussian Impulsive Channel Noise Models 

The additive white Gaussian noise model has been widely used in communication 

theory due to its mathematical tractability for analysis and optimum solutions and 

design simplicity. The Gaussian noise assumption is justified by Central Limit Theorem 

in many situations. However. Rappaport and Kiu:^; [82j said: 

It has been common in technical hteratiure treating signal detection in non-Gaussian 

noise to assume that if the receiver integrates a sufficiently large number of in­

dependent noise bursts, the resulting distribution of the test statistic would be 

Gaussian. However, if one assumes that the noise amplitude is a rcmdom variable 
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having Ifirge veiriance. the fundamental limit theorem can not be invoked unless 

there is some noise suppression before integration. 

These comments represent that the Gaussian noise assumption may not be adequate 

and justified any more in some situations. These situations are often caused by additive 

non-Gaussian noise sources. The non-Gaussian noise is characterized as being of impul­

sive nature because it occurs with noticeable probabihties of large amplitudes for short 

duration. The empirical data indicate that the pdFs of the associated noise processes 

have a similarity to the Gaussian pdf. being beU-shaped, smooth, and symmetric, as 

well as significantly heavier tails [50]. [83]. 

The non-Gaussian impulsive noise comes from either natural or man-made noise 

soiu-ces. The natural noise soiurces include atmospheric noise in radio links due to hght-

ning discharges, ambient cicoustic noise in underwater sonar and submcurine communi­

cations due to ice cracking in the arctic regions [84], and noisy aciuatic imimiils such as 

snapping shrimps [85]. The man-made noise soiurces include automobile ignitions, neon 

lights, switching transients, accidental hits in telephone lines, heavy electrically-powered 

machinery', and other electronic devices [45]. [46]. [47]. [48]. [49]. [83]. [50]. 

\[any models of non-Gaussian noise have been developed (see [50]. [49]. [48]. [54]. 

[45]. and references therein for details). These models can be divided into two classes of 

models: empirical models and physical models. Empirical models iu:e developed to fit 

collected data, often with little attention to the underlying physical mechanisms, while 

physical models are developed to model these mechanisms directly [48]. 

Middleton class A. B, and C models [45]. [52], [53]. [54] are widely used physiccil 

models. Class A noise is narrow-band in which spectra of noise sources iure comparable 

to or narrower than the passband of the receiver. Cltiss B noise is broad-band in which 

spectra of noise sources are broader than the passband of the receiver. Clciss C noise is 

the sum of Class A and Class B types. 
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An 5-mixtiire (or f-contaminated) model [48j is one of commonly used empirical 

models. The first-order pdf of this noise model has the form 

f s i x )  = (1 - e) . fi,g{x) + e • fim{x) (2.62) 

where e [0.1] and fbgi') and are the pdf's corresponding to background noise 

and impulsive (or contaminating) noise, respectively. The pdf fhgi-) is usually taken 

to be Gaussian. The pdf fimi') is chosen as one of various heavA^'-tailed pdf's such as 

the Laplacian or double-exponential and the Gaussian with large variance. In case of 

Gaussian pdf the ratio of the variance of impulsive component to the variance 

of the backgroimd one, defined as 7'^ = cTimi^tj • usually taken to be between I 

cmd 100 [48], [49]. [58]. This model is analj-ticaUy tractable. This model frequently 

represents a noise environment that is nominally Gaussian v^dth an additive impulsive 

noise component. 

The SaS probabihty density functions can accurately model large classes of impulsive 

noise [59], [60]. For example, the Cauchy pdf. as a family of SaS pdf's, Wcis already used 

as a model for severe Impulsive noise [(S2]. A reader is referred to Section 2.4 for detailed 

description of SaS pdf's. In this dissertation, we wiU model additive non-Gaussian noise 

as a SaS process. 

2.6 Optimum Detection using Likelihood-Ratio Test 

Let r(j) in (2.21) be aji observation random vector. Suppose that po (r(?')) and 

Px (r(i)) are the probability density functions for the observation vector r(i) under hy­

pothesis Ho and Hi. respectively. We can write binary hypothesis testing problem [86] 

as 

Hq  :  T { i )  =  S o ( i )  - i -  v { i )  ̂  p o  (r(/;)) 

Hi : r(z) = si(0-f v(t) - Pi (r(i)) (2.63) 
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w rhere 

A fu tu I So(i) = for =-fl 
i{i.) ^ = { (2.64) 

Si(i) = —c^'' for = —1. 

are completely known (i.e.. deterministic) vectors from two possible signal vectors and 

v(z) = j(z) + v(?;) (2.65) 

are a combined noise vector of additive non-Gaussian impulsive noise and \LAI. Here 

the associated vectors are denoted as follows: 

v(i) = [ro(i).^'i('0---- (--66) 

S o ( ' )  —  [ • ^ ' O , o ( ' 0 - •  •  •  •  • ' ' 0 . . V - i ( 0 ] ^  •  ( ' - - ^ O  

S i ( 0  —  [ • ' ' i . o C O - •  •  •  •  i ( O l ^  •  ( 2 . 6 8 )  

The likelihood ratio cem be written as 

Pi (r(0) L { T { i ) )  =  
P Q  ( r ( 0 )  
p ^ ( r ( 0  - s t ( ? ; ) )  

(r(z) -  So(*)) 

~  • ' ' i . o ( 0 - ~  •  • r v - U ' ' )  ~  • • > i . . v - i ( ' ' ) )  (2.69) 
P i t  { f o i ' )  ~  • ' ' O . O C ' ) -  ^ l ( 0  ~  • ' > O . l ( 0 -  ; V - l ( ' - )  ~  • % i V - l ( ' ) )  

(2.69) is used to Implement the optimum detector beised on Bayes rule which is known 

as likelihood-ratio test: 

f 1 if L { T { i ) )  >  r  
Seim = (2.70) 

I 0 if L { T { i ) )  <  r. 

where r is a threshold and the value of 5s(r(«)) denote the Index of the chosen hypoth­

esis. Bayes decision rule with uniform cost assignment becomes a miniTnum probability-

of-error decision rale. This rule is sometimes knouTi as the maximum a posteriori 

probability (MAP) decision rule for the bmary hypothesis test because the minimum 
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probability-of-error decision rule chooses the hypothesis that has the rnaximiim a pos­

teriori probabihty [86]. It is very hard to find (2.69) in our scenario and in practice 

because the distributions of the combined noise vector v(z) are unkno\^Ti. If we make 

an assumption that the elements of v(j) are statistically independent. (2.69) reduces to 

a simpler form 

P 9  { f o i i )  -  . r v - i ( « )  - 1 ( 0 )  
L {r{ i ) )  =  

~ •'Jo.l(0-• • • •^iV-l('') — •''•o.jV-l(O) 

n n = V P f n  -  S i . n { i ) )  

lln=oPOn (^n(0 -«O.n(0) 
•V-l 

nPc-n {rnji) - -^l.n(0) . 
(r„(0-So.nCO)'  

where (•) is a marginal probabihty density function of r„(0- Since l o g { - )  is raono-

tonically increased. (2.70) is equivalent to 

.  . /  1 iflogZ:(r(;;)) >logr 
<5s(r(z)) = < (2.,2) 

I 0 if log £(r(?:)) < log r. 

This is often called log-likelihood-ratio test. Note that the above assumption of indepen­

dence is not true in practice. 

On the other hand, in the same way as in [26j. [27], and [28]. this ukelihood test can 

be written as 

^[Pi (r(0)] 
E|po(r(i))l 
^[Pv(r(0-si(0-j(0)] 
E[pv(r(?:) -so(?:) -j(0)] 

where the expectation is taken with respect to aU random parameters of the interference 

vector j(i) such as powers, phase angles, delays, symbols, and associated spreading 

codes. (2.73) is also formidable to evaluate due to the computational complexity [27]. 

[26]. Multilayer peceptrons [27] were presented to approximate the likelihood-ratio test 

based on (2.73) for asynchronous and synchronous Gaussian multiple-access channels. 
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For synchronous Gaussian multiple-access channels, the Ukelihood-rat io test using (2.73) 

was implemented by radial bcisis function (RBF) [28j. 
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CHAPTER 3 LINEAR MINIMUM DISPERSION 

INTERFERENCE SUPPRESSION 

3.1 Introduction 

This work was originally presented in [87] and moti\-ated by the work presented in 

[49], [60]. [34]. [38]. [50], [67]. [68]. and [70]. This chapter covers the problem of Uneax 

MD detection for MAI suppression in non-Gaussian impulsive noise channels. Additive 

impulsive noise is modeled as a SaS process. The linear MD detector is adaptively 

implemented by the least mean p-norra (L\IP) algorithm proposed in [60] and [88]. The 

performance of the linear MD detector is anal\'zed in the context of a SaS process. 

We compare the bit error rates of the proposed detector with those of the conventional 

MF [49], hard-limiting MF [49]. and MMSE [30]. [.3^1], [38] detectors by extensive Monte 

Carlo computer simulation. 

This chapter is organized eis follows. In Section 3.2, we describe the problem for­

mulation of the linear MD detector in the context of a SaS process. In Section 3.3. 

we analyze the performance of the linear MD detector in the context of a SaS process. 

The adaptive implementation is presented in Section 3.4. In Section 3.5. we present and 

discuss simulation results. 
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3.2 Problem Formulation in the Context of a SaS Process 

The MD detector rainimizes the dispersion of the estimation error. This is similar 

to the MMSE criterion for Gaussian channels, since the dispersion is analogous to the 

^'ariance. The detection scheme presented here is based on symbol-by-symbol detection. 

It estimates the transmitted symbol from the received sigTial vector r(«) at time 

t  = iT.  The received signal vector r(i) is parsed to the linear \ID detector which consists 

of an finite-impulse-response (FIR) filter w^(z) as shown in FigTure 3.1. The output of 

the detector is sampled at the bit rate 1/T. The test statistic for the zth desired data bit 

is  wri t ten as  Z{i)  = —oc < i  < oc.  where w(i)  = [wo{i) .  •  •  •  .  a- ,v-[(z)F 

is the vector of tap weights of the FIR filter. The decision rule is given by = 

•• i igniZ(i)) .  Note that if w(i) = for all i ,  the detector reduces to the conventional 

MF detector. 

r(/) 

e(/) 

Training 
Sequence 

Adaptive 
Algorithm 

Figture 3.i Adaptive MD detector for an asj^nchronous BPSK DS/CDMA. 
sv"stem. 
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Define the estimation error e{i)  at time t  = iT as e(i)  = — Z{i) .  where 

is the binary data bit of user 1 at time t  = iT.  The problem can be viewed as finding" 

the FIR filter w(j)^ such that the dispersion of the estimation error e{i.) is minimized. 

Let Z{i) and e{i.) be the test statistic and the estimation error corresponding to the 

MD. respectively. Then e{i) = — Z(i) = — w(e)^r(z). where w(z) is the MD 

solution for w(«). Using the results of the linear estimation problem for a SctS process 

given in [60] and [65], Z{i) = w(2)^r(z) must satisfy; 

rn{i) .b^^\ i)  — Z{i)  = 0, for all a € [0. iV — L|. 1 < a < 2 (3.1) 
J a 

which is analogous to the orthogonaliLy principle used in the linear estimation problem 

of second-order processes. Here is the covariation defined in Section 2.4.1. WTien 

o: = 2. this converges to the orthogonality principle used in the linear estimation problem 

of second-order processes: 

-  Z{i))]  = E[r^{i)e{i) \  = 0. (3.2) 

3.3 Performance Analysis in the Context of a SaS Process 

In this section, we study the performance of the linear MD detector in the context 

of a SaS random process. For mathematical tractability, we assume that and 

j(/) are stationary SaS random vectors with the same characteristic exponent a as the 

noise vector v(«) and that r„(z) and e{i) are jointly SaS for <iU n € [0. A' — 1]. It is 

usually assumed that j(«). and v{i) in (2.21) are mutually independent for all 

i  € (—3C, 3c). In order to use the pseudo-lineaxity property with the second argiiraent 

of the co\-ariation. it is also assumed that the interference elements 

noise elements {''rt(0InrTo^ independent for all n € [OriV — l|. respectively. The 

covariation matrices of the interference vector and the noise vector can thus be wTitten 
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as 

and 

respectively, where 

and 

[^j]n-P ~ L/n-Jpla ~ I j^^n.p 

[ri.]n.p — ['-"ri- Ifrt^n.p-

Flere Sn,p is the Kronecker delta function ajid 7 is the dispersion of the corresponding 

SaS random variable. By the above assumption we can also let ^ = 7^. 

For notational simplicity, we will let b(i)  = and c = 

Under the assumptions made above, the MD solution formula is given in APPENDIX 

A bv 

= 76 (1 - r 'c (3.3) 

where 

W a =  [ f Z - Q .  •  •  •  .  ^  

ajid 

r 4 Tj + r,. 

For 1 < Q < 2. (3.3) is hard to solve for w because it is highly nonlinear. WTien a = 2.  

(3.3) is linear and a closed-form solution exists for Wq = w . The solution for w is shown 

in APPENDIX A as 

W = ^1——R- ic (3.4) 
l + crjC^R~^c 

which is eciuivcdent to the MMSE solution derived in [34]. 



www.manaraa.com

1̂2 

For 1 < a < 2. it is also shown in APPENDIX A that in matrix-form the dispersion 

of the estimation error is given bv 

= 76(1 - w(0^c)(l - + w(i)^rwa(0 (3.5) 

where 

Waii)  = • .u.^v-i(0^''"^^]^-

The minimum solution for •/^(w(«)) is derived in APPENDIX A as 

Tct ra I 
'^a.min '^a I w(t)=w,WQ(£)=w,i 

= 75(1 - (3.6) 

When Q: = 2. the minimum mean-squaxed error Jaun is shown in APPENDIX A eis 

•/min = 0-6(1 - W^c) (3.7) 

which is also equi"valent to the \IMSE solution derived in [38] and [3^1]. 

As another performance measiure. we define the signal-to-interference ratio (SIR) at 

the output of the linear MD filter w(z)^ as 

SIR = r f-m-r r u • ru' f°r 1< " < 2-
["(O (j(0 -I- n'))-"(') 0(0 + v(i))i<. 

Then by using the properties of the co-vaxiation and independence assumptions made 

above, the output SIR can be shown in APPENDIX A as 

"/ft |w^(i)cp 

w^(?.)rwa(z) 

for 1 < a < 2. The output SIR corresponding the MD solution of w(«)= w cind 

Wq(z)= Wq is given in APPENDIX A by 

SIR.V/D ~ SIR|w(i)=w;w„(t)=Wo 

= 7^(w^c)<--'> = SIR^^,. (3.10) 
a.min 
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WTien a = 2.  (3.10) can be written in APPENDIX A as 

SIR„.a.x = 
\ '^min / 

which is also equi^-alent to the \EMSE solution derived in [38] and [34]. The performance 

analysis show^ that the \ID solution for w minimizes the dispersion of estimation error 

cind thus maximizes the output SIR under the independence assumptions. 

For a particular sequence of L—1 interference symbols, by (i) = 

the interfering symbol vector is fixed as j(z) = jj(0- To analyze the probability of er­

ror. we condition on the desired symbol b{i.) = 1 and the interfering symbol vector 

by(z) = ^6y^6y^\--- .bj^ Assuming that Pr{6(/) = +1}- = Pr{6(z) = —1} = 1/2. 

the conditional probability of error Ccin be written as 

^e(by(0) = ^Pr{Z(0 < 0 I b { i )  =  -M.by(0} +|Pr{Z(/;) > 0 | 6(0 = -l.by(/;)[ 

= Pr{Z(j) < 0 I 6(z) =+l.by(7:)} 

= [ (3.12) 
J - 5C 

where /a(s? 7z(t)-/^o) SaS pdf mth location peirameter f i^  and dispersion ~!2{t)  

given in APPENDIX A. Assume that all the interference symbols are equally likely. 

Then the average probability of error is given by 

P, = ^P,(bv(/))Pr{bj(j)} 
bj(0 

= 5  ̂E 
bj(z) 

where an upper bound Pe(b}(i!)) on the average probability of error is caused by the 

worst case sec^uence of interference symbols b}(2). 

When Q = 2, in APPENDIX A. (3.12) reduces to 

= (:U3) 



www.manaraa.com

u 

where Q{x) = Note that (3.13) is eqiii\'nlent to the conditional proba­

bility of error given in [3 1̂]. 

(A.17). (A.18). and (3.12) imply that the conditional probability of error of the linear 

MD detector is lowered if the dispersion of estimation error is minimized and thus the 

output SIR is mciximized. 

3.4 Adaptive Implementation 

Since a closed-form \ID solution in general does not exist for 1 < a < 2. we consider 

cin adaptive solution. Assume that the input vector r(z) applied to the FIR filter is 

stationary SaS process. We also assume that 6^^'(z) and each element of r(i) are jointly 

SaS. Consider the problem of finding the MD solution for w(0 such that the cost 

function 

•/a(w(;;)) = ||e(i)||^ = ||M'>(/:) - w(/:)^r(/:)||^^ 

is minimized. The cost fimction J^{w{i))  is quite intractable cis given in (3.5). An 

eciui^-alent cost function ctm be written as 

Jp(w(i))  = £• ( jef?;)! ' '}  = E — w(z)^r(/)r |  

for 0 < p < a and 0 < a < 2. We use the least mean p-norm(L!MP) algorithm proposed 

in [60| and [89] to solve for the tap weight vector w(?!) that minimizes the cost fimction 

Jp{w{i)). Its adaptation formula is given by 

w{7.  + 1) = w(z) + •  p  • |e(/:)r~' sign{e{i))  • v{ i)  (3.14) 

where > 0 is the step size and 1 < p < q. Note that the LMP algorithm reduces 

to the conventional LMS algorithm for p = a = 2. Defining an effective step size 

as • p • |e(i)|''"\ (3.14) can be re'WTitten as 

w(/: + 1) = w(0 + fJi^f f iei i ))  •  s ign{e{i))  • r ( i ) .  (.3.15) 
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Thus the LMP algorithm can be viewed as the signed-L^IS algorithm with a time-

varying step size. Note that for p = 1. is constcmt. For I < p < q. 

depends on p and e{i) .  In general. is large before convergence since 

the absolute error |e(z)| is large . while is small after convergence. Thus the 

convergence rate of the L^iIP algorithm is fast at the transient state and gets slower 

as the L\IP algorithm converges. This phenomenon is noticeable as p increases. It is 

shown in [88] that when input process and desired process are non-Gaussian, the L\IP 

converges to solut ions other  than the Wiener solut ion for  various p.  

3.5 Simulation Results 

We performed an extensive Monte Carlo simulation to show the improved perfor­

mance of the proposed adaptive MD detector in non-Gaussian impulsive noise. The bit 

error rates are compared for several detectors such as the conventional \IF. hcird-hmiting 

^IF (HLMF). and \CMSE detectors. We present several simulation results for different 

values of the chcuracteristic exponent q and the dispersion 7 of the additive SaS noise. In 

aU simulation results, we consider as\Tichronoiis BPSK DS/CD\LA. systems with K = 2. 

5. 12. and 24 u.sers. We use A., = I. = 2. Kj = 5. and Kj = 10 for K = 2. K = 0. 

K = 12. and K = 24. respectively. 

Figures 3.2 - 3.10 show the bit error rate (BER) performajice as a function of the 

PRID for the nine condition sets: {a = I.l. 7 = 0.05. and K = 5 users}, {q = 1.1. 

7 = 0.2. and K = 5 users}, (a — 1.5. 7 = 1. and K = 2 users}, {a = 1.5. 7 = 0.2. 

and K = 5 users}, (a = 1.5. 7 = 1. and K = o users}, {q — 1.5. 7 = 1. and K = 12 

users}, {a = 1.5. 7 = 1. and K = 24 users}, {a = 1.9. 7 = 0.2. and K = 5 users}, 

and {a = 1.9. 7 = 1. and K = 0 users}, respectively. When q = 1.1. 7 is set to 0.05 

and 0.2 instead of 1. since none of the detectors perform decently with highly impulsive 

noise with 7 = 1. The first PRID value of each plot corresponds to equcd powers (or 
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perfect power controi). The BER performance of the proposed adaptive \ID detector 

remains nearly constant for most PRID levels. This reflects the near-far resistance of 

the proposed detector for most degrees of near-fax environment. The performance of the 

adaptive MD detector is much better than that of the other detectors at high PRID. 

while it is comparable to that of the conventional \IF detector at low PRJD. The HL\IF 

detector has much better performance at lower PRID levels, but its performance rapidly 

degrades as the PRID increases, since it is locally optimum for single-user non-Gaussian 

(Laplacian) noise channels. The ^IMSE detector performs sigTiificantiy worse than the 

adaptive MD and conventional \rF detectors. The \rMSE detector is shown not to be 

efiective in additive non-Gaussian impulsive noise channels modeled as SaS processes 

as expected. When the system is heavily loaded (or K = 12 and = 5). the adaptive 

MD detector provides substantial performance gains over the conventional \IF detector. 

In addition, the HL\IF detector is less effective for low PRID levels. This implies that 

the adaptive MD detector can be globally superior over all PRID levels as the system 

gets more heavily loaded. Wlien the system is more heavily loaded (or K = 24 and 

= 10). the adaptive MD detector outperforms the other detectors and the HL\tF is 

not eflective anymore for any low PRID level. 

Figure 3.11 through Figure 3.15 show the BER performance as a function of the 

mixed signal-to-noise ratio (SNR ) for the five condition sets; {a = 1.1. PRID = 40 dB. 

and K = o users}, {o: — 1.5. PRID = 23.01 dB. and K = 2 users}, (a = 1.5. PRID 

= 35 dB. and K = 5 users}, {a = 1.5. PRID = 40 dB. and K = o users}, and {a = 1.9. 

PRID = 40 dB, and A' = 5 users}, respectively. Here, the mixed SNR is defined as 

where 7 is the dispersion of the additive SctS noise process and •Si(i) is the transmitted 

signal for user 1 given In [58]. Table 3.1 shows the mixed SNR for each dispersion 7 of 

the additive SaS noise. 

mixed SNR = 10 log 
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i(f 
Alpha=1.1, Gamma=0.05, K=5: LMP with p=1 
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Figure 3.2 BER as a function of the PRID for an cisynchronous DS/CD\L\ 
system: o: = 1.1. 7 = 0.05. K = 5, and = 2. 
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Figure 3.3 BER as a function of the PRID for an asynchronous DS/CD\L\ 
system; a = Li. 7 = 0.2. K = 5. and - 2. 
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id" 
Alpha=1.5, Gamma=1, K=2: LMP with p=1 
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Figure 3.4 BER as a function of the PRTD for an asynchronous DS/CD\IA 
system; a = 1.5. 7 = 1. R' = 2. and = 1. 
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Figure 3.5 BER as a function of the PRID for an asynchronous DS/CDMA 
system: a = 1.5. 7 = 0.2. K = 5. and = 2. 
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Figure 3.6 BER cis a function of the PRID for an aajmchronous DS/CD\LA. 
sv'stem: a = 1.5. 7 = 1. A.' = 5. and = 2. 
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Figure 3.7 BER as a function of the PRID for an asjTichronous DS/CD\LA. 
system: a = 1.5. 7 = I. K = 12. and = 5. 
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icf 
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Figure 3.8 BER as a function of the PRID for an asv-nchronous DS/CD^LA. 
sv-stera: a = 1.5, 7 = 1. K' = 24, and = 10. 
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Figure 3.9 BER as a function of the PfUD for aji asv-nchronous DS/CD\LV 
sj^tera: a = 1.9. 7 = 0.2. K — 5. and = 2. 



www.manaraa.com

oo 

irf. 
Alpha=1.9, Gamma=1, K=5; LMPs with p=1.3 (MD1) and p=1 (MD2) 
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Figure 3.L0 BER as a function of the PRID for em as\Tichronous DS/CD\L\ 
system: a ~ 1.9. 7 = 1. /v = 5. and = 2. 
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Table 3.1 Mixed SNR vs. 7 

SNR (dB) 7 SNR (dB) 7 
-16.37 13 -10.00 3.00 
-15.64 11 -5.23 1.00 
-14.77 9 -2.22 0.50 
-13.68 7 4.77 0.10 
-12.22 5 7-78 0.05 

The PRID is set to 35 dB or 40 dB to simulate severe near-far environments. The 

adaptive MD detector gives a much lower BER than the conventional MF detector except 

in the extreme case of small SNR (i.e., large dispersion of the additive noise process). It 

is apparent that the adaptive \ID detector outperforms the conventional MF detector 

in MAI-limited environments in which MAI dominates over the additive SaS noise. It 

is also obser/ed that the HLMF and MMSE detectors always perform poorly. This is 

due to the fact that the HLMF is not designed for MAI suppression, but for single-user 

non-Gaussian impidsive noise channels, while the MMSE criterion is not effective since 

SaS processes have infinite variance. 

Figiure 3.16 shows the BER performance as a fimction of the number of active users 

K for a = 1.5 and 7 = 1. Figure 3.16 (a) denotes the case for equal powers. Each of 

the associated PRID values is 0, 6.02. 10.41, emd 13.62 dB for K = 2. 5. 12, and 24, 

respectively. Figure 3.16 (b) denotes the case for unequal powers. Each of the associated 

PRID v-alues is 21.00 (24.00 only for HLMF with K = 2), 36.02. 46.41. 49.62 dB for 

K = 2, 5. 12, and 24. respectively. For equal powers (or perfect power control) the 

HL!MF detector always outperforms the remaining detectors. But as K increases, the 

performance of  the HLMF detector  rapidly deteriorates in the range of  between K = 2 

and K = 12 and slowly approaches that of the adaptive MD and MF detectors in the 

range of between A' = 12 and K = 24. 

Figiire 3.17 and Figure 3.18 show the BER performance as a fimction of the charac­

teristic exponent a of the additive SaS impulsive noise for K = 0 and = 2. Figure 
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Alpha=1.1. PRID=40 dB. K=5; LMP with p=1 

10 -CD L 

- 4 - 2  0  2  
Mixed SNR (dB) 

^ I O MD 
- - MF 

X — — K 

- HLMF 
MMSE 

Figure 3.11 BER as a function of the mixed SNR for an asynchronous 
DS/CD\LA. system: a = 1.1. PRID = 40 dB. K = 5. and 
K, = 2. 
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Alpha=1.5, PRID=23.01 dB, K=2; LMP with p=1 
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Figure 3.12 BER aa a function of the mixed SNR for an asynchronous 
DS/CD\L\ system: a = 1.5. PRJD = 23.01 dB. K — 2. and 

= 1. 
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Alpha=1.5, PRID=35 dB. K=5; LMP with p=1 
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Figure 3.L3 BER as a function of the mixed. SNR for an asynchronous 
DS/CD\IA system: a = 1.5. PRID = 35 dB. K = 5, and 
K, = 2. 
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Figure 3.14 BER as a function of the mixed SNR for an asynciironous 
DS/CD\IA sj^tem: a = 1.5. PRID = 40 dB. K = 5. and 
K. = 2. 
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irf 
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Figure 3.15 BER as a fuBction of the mixed SNR for an asynchronous 
DS/CD\LA. system: a = 1.9. PRID = 40 dB. K = 5. and 
K, = 2. 
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3.17 represents the case for 7 = 0.2. For equal powers with PRID = 6.02 dB (or perfect 

power control), the BER performance of the HL\IF detector does not appear due to its 

very small values. The HL\IF detector outperforms the other detectors for all values of 

a. For unequal powers with PRID = 42.02 dB, the adaptive \ID detector significantly 

outperforms the other detectors for all values of a. As a increases, the BER performance 

of the adaptive \ID detector increases. whUe that of the remaining detectors nearly re­

mains unchanged. This implies that the adaptive \ID detector is very effective for this 

channel condition, but the remaining detectors are not. Figiure 3.18 represents the case 

for 7 = 1. For equal powers, the HL\IF detector outperforms the other detectors for all 

values of ct. The performance of each of the detectors cleaxly improves cis a increases 

as expected. For unequal powers with PRID = 36.02 dB. the adaptive \ID detector 

outperforms the remaining detectors when a is approximately Icirger than 1.2. while 

the MF detector does when a is approximately less than 1.2. The HL^-IF and \E\ISE 

detectors are not effective anymore in this channel situation since the BER performance 

does not matter with a. For unequal powers with PRID = 48.02 dB. the adaptive MD 

detector significantly outperforms the remaining detectors except when a is less thiin or 

equal to 1.1. When a is less than or equal to 1.1. 7 = 1 is severely impulsive enough to 

make aU of the detectors deteriorate. 

FigTure 3.19 and Figaire 3.20 show the transient behavior of the adaptive MD detector 

using the LMP algorithm with p = 1 for PRID = 46.4 dB (or no power control) and 

PRID = 10.4 dB (or perfect power control). The results show that the output SIR after 

the adaptive \ ID fi l ter ing converges to the maximum value as  the est imation error  e(f . )  

converges to the minimum one as shown analytically in Section 3.3. It is observed that 

the L!MP algorithm takes on the order of several (ten) thousand bits to converge to a 

steady stcite. Various simulation results show that the convergence rate depends on the 

number of active users. PRID level, and a. 
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Figure 3.16 BER as a function of the number of active users K for an 
asynchronous DS/CD\LV system: a = 1.5, 7 = 1. and L\IP 
with p = 1: (a) equal powers and (b) unequed powers. 



www.manaraa.com

64 

MF 
HLMF! I 
MMSE I 

X 
Ui a 

AJona 

(a) 
Unequal pcwefs (PRIO»>i2.02 dB): GanvnasO.S. Ks5. LMP with psi 

itf. 

t 

: I A MD ! 
MF j 

- - HLMF! 
- . MMS^ 

t .2 
Ajpna 

(b) 

Figure 3.17 BER as a function of the chfircteristic exponent a of the ad­
ditive channel noise for an c\synchronous DS/CD\LA. system: 
7 = 0.2. K = 5, Kg — 2. and L^'IP with p = 1: (a) equal pow­
ers (PRID = 6.02 dB) and (b) unequcd powers (PRID = 42.02 
dB). 
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Figure 3.18 BER as a function of the chaxcteristic exponent a of the ad­
ditive channel noise for an asynchronous DS/CD\LAL system: 
7 = I. K = 5. R'a = 2. and LMP wdth p = I: (a) equfd powers 
(PRJD = 6.02 dB). (b) unequal powers (PRID = 36.02 dB), 
and (c) unequal powers (PRID = 48.02 dB). 
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Figure 3.19 Transient behavior of LMP algorithm with p = 1 as a function 
of the number of iterations; a = 1.5. 7 = 1. PRJD = 46.4 dB. 
K = 12,  and Kj = 5: (a)  one real izat ion of  error  s ignal  e{i)  
and (b) output SIR in dB. 
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Figure 3.20 Transient behavior of LMP algorithm with p = 1 as a function 
of the number of iterations; a = 1.5. 7 = 1. PRID = 10.4 dB. 
K = 12 .  and  Kj  = 5:  ( a )  one  rea l i za t ion  o f  e r ro r  s igna l  e{ i )  
and (b) output SIR in dB. 
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CHAPTER 4 LINEAR LEAST Lp-NORM INTERFERENCE 

SUPPRESSION 

4.1 Introduction 

The adaptive minimum dispersion (MD) detector [87] has been proposed for inter­

ference suppression of DS/CD\LA. systems in the presence of additive non-Gaussian 

impulsive noise modeled as a symmetric a-stable [SaS) process [60]. The adaptive 

MD detector uses the least mean p-norm (LMP) algorithm [60] and has good near-far 

resistance. 

The LMP algorithm is a member of the family of stochastic gradient-based algo­

rithms like the LMS algorithm [90]. The LMP algorithm depends on the underlying 

distributions of aJl input signals. It is shown in [88] that when input process and de­

sired process are non-Gaussian, the LMP algorithm converges to solutions other than 

the Wiener solution for v-arious ^ulues of p. That is. for each value of p. the L^.IP cU-

gorithm approximates the associated optLmal solution derived from ensemble averages. 

However, for SaS processes, the LMP algorithm has limitation on the values of p (i.e., 

1 < p < Q < 2), After reaching the optimal solution, the LMP algorithm randomly 

moves aroimd the optimal solution due to the presence of gradient noise like the LMS 

algorithm. It is known that since the mean squared error (MSE) depends on time i. the 

estimation error e{i) is nonstationeiry (see [90] for fiu-ther details). The LMP algorithm 

hcis a slow convergence rate as shown in Chapter 3 and [60]. 

The above facts and limitation motivate us to consider the method of leant Lp-norvi 
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for \LAI suppression. It is much likely that higher •values of p (i.e.. I < p < 3c) can offer 

performance improvements over the adaptive MD detector using the L\IP algorithm 

with 1 < p < a < 2. The method of least Lp-nomi solves the linear filtering problem. 

This method reciuires no assumptions on the statistics of the input signals unlike the 

stochastic gradient-based algorithms. Hence the restriction of the values of p can be 

releeised in this method. The conventional least squares (LS) (or L-^-norm) method 

actucdly belongs to a family of least Lp-norm methods. The LS method has been widely 

used because of its computational simplicity. Rice and White [91] said: 

The principle of LS is normally defended (if at all) on the basis of the assiunption 

that the errors e{i) are normally distributed. It is undoubtedly true that the L-2-

norm is efficient in such a situation, probably the most efficient possible. However, 

we would like to refer the reader to the proposal [92] that all texts on statistics 

should state: Normality is a myth, there never has been, and never will be. a 

normal distribution. Lp-norm estimation depends greatly on the distribution of 

the errors. Furthermore, there is a large variation in the effectiveness of various 

norms and no single norm is good (or even mediocre) in all situations. 

The LS method provides the Wiener solution when the signals are Gaussian-distributed 

and ergodic. The least Lp-norm method calculates its optimal solution corresponding 

to a finite set of input signal vectors whenever a new input signal vector r(«) is avail­

able. The optimal solution remains constant diunng the interval of each data block. 

This method can be considered for both stationary and nonstationary signals like the 

LS method. Note that the LMP algorithm was derived under the assumption that the 

input vector r(z) appUed to the transversal filter is a stationary SaS process. 

Lp-norm estimation problem in linear regression has been an active research area 

of robust data modeling [93], [94], [9i]. There have been two successful applications 

using fast algorithms for Lp-norm deconvolution proposed in [95]: least Lp-norm estima­
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tion of autoregressh'e model coefficients of symmetric a-stable processes [96] and linear 

predictive modeling for sinusoidal frequency estimation[97]. 

This chapter considers the problem of interference suppression for DS/CD\IA sys­

tems in SaS non-Gaussian impulsive noise channels using the Lp-norm estimation. Simu­

lation results show that the detector based on the Lp-norm estimation provides significant 

performance improvements over the adaptive ^-ID detector Ln a wide range of near-fax 

situations. The proposed detector Indicates superior near-far resistance. 

4.2 Problem Formulation 

Consider an asynchronous binary phase shift keyed (BPSK) DS/CD\LA. system in the 

presence of non-Gaussian impulsive noise modeled as a SaS process as shown in Section 

2.1. After the front-end chip-matched filtering the received signal vector r(i) E at 

time t = IT is given by 

r(z) = b{ i ) c  j(0 + v(/;). — oc < / < oc 

where b{ i )  is the signal bit of the desired user, c 6 is the spreading code vector of the 

desired user. j(i) E is the interference vector, and v(z) 6 is the additive channel 

noise vector modeled as a Sa.S process. Here T is the s\"nibol inten.'al and N is the 

processing gain (see Section 2.1 for detailed description). The interference suppression 

can be formulated as a Unear least Lp-norm estimation problem: Find an optimal tap 

weighting vector w{n) € of a transversal filter such that 

min Jr{ w {n ) ) .  1  <  p  <  oc  (4.1) 
w(n) 

where •/z:p(w(n)) is a cost fimction defined as 
n 

= ^|e(Or 
1= 1  

n 

=  5 1 ~  w ( n ) ^ r ( 0 | ^  .  ( 4 . 2 )  
1=1 
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Here e ( i )  is the estimation error and w(z) E is the tap weighting vector of the 

transversal filter. Assume that n > N. Then this problem can be v-iewed as finding a 

least Lp-norm solution to the overdetermined linear system of equations 

Aw(n) = b (4.3) 

where 

r(l)^ 

r(2)^ 

r(n)^ 

€ b ^ 

6(1) 

6(2) 

b{n)  

e and w{n)  4 

woin )  

i v i {n )  
(4.4) 

An overdetermined system typically hcis no exact solution, since b cannot belong to the 

range of A, denoted by R{A), a proper subspace of ?)?" [98|. [99|. Hence we need to find 

the optimal vector w{n) such that 

min ./ip(w(n)), 1 < p < oc 
w(n) 

(4.5) 

for some suitable choice of p. where 

= ||e(a)||J 

= ||b-Aw(;i)||^ 
n 

r = l 
n 

(4.6) 

(4.7) 

(4.8) 

(4.9) 
t=i 

Here G{n) is a residual vector and ||-||p represents the pth power of the Lp-norm. Different 

Lp-norm solutions exist for different values of p [99]. Note that when p = 2 the least 

Lp-norm solution reduces to a conventional least squcu"es (LS) solution cuid when p = 1 

it reduces to a Li-norm or least absolute deviations (LAD) solution. Since the object 

function is convex for 1 < p < oc. the least Lp-norm solution is unique except 

for p = 1 [97]. 
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4.3 Least Lp-Norm Solution 

To obtain the leeist Lp-norm solution to (4.3). we use the approach giv-en in [97j. A 

reader is referred to [97] for further Lnformation. First, we differentiate (4.8) with respect 

to the tap weights and set the particd deri'vatives to zero: 

dwj{n )  
=  0 .  j  =  0 .1 . - - -  .N  -  I  (4.10) 

or 

53;'l(e(«))ir ^s^n((e(/^))J (A).^- =0. i = 0.1.• - - .-V - 1. (4.11) 
t=i  

where (•)j and {•)^j denote the ith element of the associated vector and the /'th row-qth 

column element of the associated matrix, respectively. Since • ' i gn{{e{n ) ) - )  =  .  

(4.11) becomes 

n 

X^Pl(e(")),r~'^(e(fi)),(A)^^. =0. J =0.1.-•• ..V- 1. (4.12) 
: = l 

Let 

W(n)  =  d^•a^(/? | (e(A^))^ |^"•^p | (e(n)) .J ' '~•^•••  .p | (e(n))„ | ' ' " ' -^)  .  (4.13)  

Then (4.12) can be written as 

{A^W{n)e{n ) ) ^  =  0 .  j  =  0 .1 .  •  •  •  .  N  -  I .  (4.14) 

Substituting e(n) = b — Aw(n) into (4.14) yields 

A^W(n) (Aw(n) — b) = 0 (4.15) 

or 

A^W(a)Aw(n)= A^W(a)b (4.16) 
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which is known as the lueighted normal equations. Since the diagonal weighting matrix 

W(n) is a function of the residual vector e(n). the weighted normal equations are non­

linear and usually must be solved via iterative methods such as the iteratively reiveighted 

least squares (ERLS) [100], [95], [97] or the residual steepest descent (RSD) [95], [iOL] 

algorithm. When p = 2. the matrix W(fi) becomes a scaled version of an identity-

matrix and (4.16) thus red.uces to the normal equations of the conventional LS. The 

IRLS algorithm is summarized in Table 4.1. Here an absolute value of the normalized 

Lp-norm differential of the residual vectors is used as a stopping condition of convergence 

[96|. 

|e(n:*: + 1)11 - ||e(n:A:)|i 
+ . fc = 0,l..... (4.17) 

Unfortunately, the recursive least Lp-norm algorithm is hard to find because W(n)  is 

a fimction of the residual vector e(n) (see (4.13)). Hence, adaptive algorithms cannot 

be easily developed for least Lp-norm estimation. The IRLS algorithm converges for 

2 < p < 3. while it diverges for 3 < p < oc [102], [100], [103], [104]. For 1 < p < 2, 

the IRLS algorithm also converge under weak conditions [96], [97]. [100]. Hence, we 

restrict oiu: attention to the lefist Lp-norm solutions with 1 < p < 3. The least Lp-norm 

{1 < p < 2) estimates tire consistent like the LS and LAD estimates [105], [96]. 

The IRLS algorithm has more computational complexity than the L^^IP algorithm. 

The IRLS algorithm requires the inversion of A^W(ri: k)A E of order com­

plexity [106] as shown in step 4 of Table 4.1. The IRLS algorithm taJces 0{Ktt • per 

symbol, while the L\IP algorithm takes 0{2N) per symbol. Here 0{N) represents the 

computational complexity of order N and Ku denotes the number of iterations of the 

IRLS algorithm. However, the IRLS algorithm gives better performance, but at the cost 

of its computational complexity. 
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Table 4.1 IRLS Algorithm 

Step Description 
1 Initialize tap weighting vector 

•w(n: 0) = (A^A) ^ A^b 
2 Calculate residual vector 

(e(n: k))i = (b — Aw(n: k ) ) i .  i .  =  1.2. • • • . n  
3 Calculate diagonal weighting matrix 

_  I  \ {e{n :k ) ) , \  <e  '  "  
where e is a positive small value to avoid the /'th residual {e{n :  k ) ) i  

with value close to zero 
4 Update tap weighting vector 

w(n:A: + l) = {A'^W{n: k)A)'^ A'^W{n: k)b 
5 Go to step 2 or stop when convergence is achieved, i.e.. 

e^p{n:k + 1) is less than 

4.4 Simulation Results 

We compare the BER performance of the interference suppression using the least 

Lp-norm criterion with that of the adaptive MD. MF. \EMSE. and HX^IF detectors 

via Monte Carlo simulation in the same simulation environment as in Section 2.2. We 

consider asynchronous BPSK DS/CDMA system with K = 5 users tmd K,^ = 2 

users. In step L of the IRLS algorithm, the tap weighting vector is initialized as the 

spreading code vector c of the desired user instead of the LS solution vector. In eiich 

of the simulations the value of p in the least Lp-norm criterion is set to I. unless stated 

otherwise. 

Figures 4.1 - 4.4 show the BER performeince as a fimction of the PRID for the four 

condition sets such as (a = I.l and 7 = 0.2}-, (q = LI and 7 = 1}. {q = 1.5 and 

7 = 0.2}. and (q = 1.5 and 7 = 1}. respectively. Here a is the characteristic exponent 

and 7 is the dispersion of the SaS noise process. We use the following acronyms in 

Figiure 4.1 through Figure 4.4: LP stands for the least Lp-norm detector using the 

IRLS algorithm. MD for the adaptive minimum dispersion detector using the L\IP 
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algorithm. \IF for the conventional matched filter detector. \£\'ISE for the minimum 

mean squared error detector, and HL\IF for the hard-limiting matched filter detector. 

The performance of the least ILp-norm detector is nearly insensitive to all PRID levels. 

This shows that the proposed detector gives much better near-far resistance than the 

adaptive ^ID detector in a wide range of near-far environments ranging from mild to 

severe situations. In particular, its BER performance does not degrade even in severe 

near-far situations imlike the adaptive \ID detector. Hence the proposed detector is 

more effective against severe near-far environments them the adaptive MD detector. In 

addition, the proposed detector provides significant BER performance improvements 

over the adaptive MD detector for all PRID levels. The least Lp-norm detector stiU 

performs weU for all PRID levels even though none of the detectors perform decently \\'ith 

highly impulsive noise with 7 = 1. The steady state performance heavily depends on the 

number of rows n of matrix A. i.e. data block size to be estimated. It is experimentiilly 

observed that n = 32 gives best BER performance for the current simulation environment 

Figure 4.5 through Figure 4.8 show the BER performimce as a function of p for 

7 = 0.2 (with o-mark) and 7 = LO (v^dth *-mark). and q = 1.5. R' = 5; PRID -

6.02.18.02.30.02. and 42.02 dB. respectively. Given 1 < p < 3. the simulation results 

show that the Lp-norm with p = 2.9 is best for PRID = 6.02. 18.02.42.02 dB. while the 

Lp-norm wath p = 2.7 for PRID - 30.02 dB. 

Figiure 4.9 and Figure 4.10 show the BER performance of the Lp-norm detector as a 

fimction of the PRID for different values of p for the two condition sets such as {q = 1.5. 

7 = 0.2. K = 5. and = 2} and (a = 1.5. 7 = 1.0. K = 5. and K., = 2}. respectively. 

The detector's BER performajice depends on the value of p in the Lp-norm. The BER 

performance significantly improves as p approaches 3. 

Figiure 4.11 shows the transient state behavior of the proposed detector using the 

IRLS algorithm as a function of number of iterations for q = 1.5. 7 = 0.2. PRID 

= 48.02 dB. and p = 2.7. In step 5 of Table 4.1. is set to 10""'. The IRLS algorithm 
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Figure 4.1 BER as a function of the PRID for an asynchronous DS/CD\LA. 
system; a = 1.1. 7 = 0.2. K = 5. = 2. and least Lp-norm 
with p = 1. 
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Figure 4.2 BER as a function of the PRTD for an asynchronous DS/CD\L\. 
system: a = 1.1. 7 = 1. K = o. = 2. cuid least Lp-norm with 
p = 1. 
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Figure 4.3 BER as a function of the PRID for cin eisynchronous DS/CD\IiV 
system: q = 1.5. 7 = 0.2. K = 5. — 2. and leeist Lp-norm 
with p = 1.49 (LPl) and p = 1.6 (LP2). 
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Figure 4.4 BER as a function of the PRID for an asynchronous DS/CDMA 
system: a — 1.5. 7 = 1. R' = 5. = 2. and least Lp-norm with 
p = 1. 
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Figure 4.5 BER of the Lp-norm detector as a function of p for different 
\-alues of-/; q = 1.5. K = 5. = 2. and PRID = 6.02 dB. 

takes on the order of a few tens of number of iterations to converge to a steady state for 

each new s^-mbol. The number of iterations actually depends on the stopping condition 

value If is larger, fewer iterations are required. In this case, convergence can 

be obtained within a few iterations. The IRLS algorithm operates on data blocks of 

symbols, while the L!MP algorithm works on a symbol-by-s\-mbol basis. Therefore it 

is not possible to compare the convergence rates of the IRLS ^i^ath those of the LMP 

algorithms qucintitatively. 

The Umitation of the proposed detector is that the IRLS algorithm may have numer­

ical problems. In step 4 of the IRLS algorithm AJ^{n:k)A. may be close to singular 

since, as described in [32], the input correlation matrix AjA. is nearly singular when the 

number of all active users K is less than the ntimber of chips N and the Gaussian noise 

variance is small compared to signal power. However, it is less likely that this numerical 

problem will occur in the presence of additive non-Gaussicm impulsive noise modeled as 

a SctS process since it has an infinite variance. 
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Figure 4.6 BER of the Lp-norra detector as a fiinction of p for different 
values of 7; a = 1.5, K = 5. = 2. and PEUD = 18.02 dB. 
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Figure 4.7 BER of the Lp-norm detector as a function of p for different 
values of 7; Q = 1.5. K = 5. = 2. and PRID = 30.02 dB. 
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Figure 4.8 BER of the Lp-norm detector as a function of p for different 
vakies of 7: a = 1.5. R' = 5. = 2. and PRID = 42.02 dB. 
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Figure 4.9 BER of the Lp-norra detector as a function of the PRID for 
different \-aiues of p; Q = 1.5. 7 = 0.2, K = 5. and = 2. 
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Figure 4.iO BER of the Lp-norm detector as a function of the PRID for 
different v-alues of p: q = 1.5. 7 = 1.0. K = 5. and /v'^ = 2. 
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(c) 

Figure 4.11 Transient behavior of the IRLS algorithm as a function of num­
ber of iterations: (a) residual vector e{n:k) € 5?". n = 32. (b) 

k), (c) least Lp-norm solutions for all elements of the tap 
weighting vector w(n:k): a = 1.5. 7 = 0.2. K = 5. = 2. 
PRID = 42.02 clB. and p = 2.7. 
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CHAPTER 5 FUZZY HYBRID INTERFERENCE 

SUPPRESSION 

5.1 Introduction 

In this work, we propose a fiizzy hybrid detector for interference suppression in 

DS/CDMA sys t ems  when  add i t i ve  channe l  no i se  mode led  a s  a  symmet r i c  a - s t ab l e  (SaS)  

process is present. In multiple-access impulsive noise channels, nonlinear detectors such 

as the hard-Umiting matched filter (HLMF) are more effective than the matched filter 

(MF) detector against impulsive noise-hmited situation. The linear MF detector is more 

effective against multiple-access interference (MAI)-hmited situation than the HLMF 

detector [58]. However, the linear MF detector hcis a near-far problem. To combat 

the near-far problem in multiple-access impulsive noise channels, the adaptive minimum 

dispersion (MD) detector has been proposed for DS/CDMA systems in the presence of 

additive channel noise modeled as a SaS process. The adaptive MD detector has good 

near-far resistance [87], The performance of the adaptive MD detector is compcurable 

to that of the conventional MF detector and inferior to that of the HLMF detector 

in impulsive noise-limited environments where additive impulsive noise dominates over 

MAI. Since the HLMF detector is locally optimum for a Laplacian noise density [75). 

it performs weU in impulsive noise-limited environments [49]. [66]. [87] (see Chapter 3). 

A hybrid detector that combines the linear MF and the HLMF was introduced in the 

form of adaptive detection of signals in single-user impulsive noise environments. This 

hybrid detector Wcis adaptively implemented such that an incremental signal-to-noise 
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ratio (SNR) is maximized. This detector performs well in a wide range of the unknown 

underlying noise environments [107]. 

These facts motivate us to consider a hybrid detection scheme which combines the 

best features of the adaptive MD detector for MAI-limited environment and the HL^EF 

detector for impulsive noise-limited environment. The hybrid approach employs a linear 

combination of the outputs (or test statistics) of the adaptive MD eind HLMF detectors. 

The problem is how to control the mixing parameter effectively. The mixing parameter 

depends on the underlying channel environments. Simulation results show that the 

fuzzy hybrid detector makes the best use of the advantages of the adaptive MD and 

HLMF detectors in a wide range of the underlying channel environments that range 

from impulsive noise-limited to \L\I-limited environments. 

5.2 Problem Formulation 

Consider an asvTichronous binary phase shift keyed (BPSK) DS/CD\L-V system in 

the presence of non-Gaussian impulsive noise modeled as a SaS process as shown in 

Section 2.1. The proposed detector scheme is shown in Figure 5.1. The resulting test 

statistic is given by 

Z{ i )  =  3  • w(z)^r(i) -r (1 - 3)  •  c^g(r(?:)). -  yz  <  i  <  2C (.5.1) 

where 3 E [O. l] is a mixing parameter. r(z) € 3?'^ is the received sigiaal vector at ith 

symbol interval. w(j) € 5?'^ is the tap wisighting vector of adaptive MD detector, c G 

is the desired user's spreading code, and g(r(i) € 5?'^ is a nonlinear vector fimction. The 

first term indicates the scaled test statistic of the adaptive MD detector and the second 

term indicates that of the HLMF detector. The adaptive MD detector is operated in­

dependently using the error signal e{i) = b{i) —w{i)^v{i) where b{i) is a desired signal bit. 

For the BEL^IF g(r(i)) is chosen as g(r(i)) = [.s2^n(ro(i)), sign{ri(i)). • • • . .!>7;^ri(rv-i(''))|^-

For J = 0 the test statistic of the hybrid detector reduces to that of the HLMF. while 



www.manaraa.com

87 

e(/) 

^ - p  

Mi )  

g(r( / ) )  

Figure 5.1 Hybrid detector model. 

for 3 = 1 it reduces to that of the linear adaptive MD detector. A fuzzy system controls 

the mixing parameter 3 depending on the underh*ing channel envTronments. 

5.3 Fuzzy System 

The fuzzy system is a single input, single output system. The input variable is the 

power ratio of the interfering users to the desired user (PRID) given in (2.22). The output 

variable is the mixing parameter 3. The PRID is given for each of the simulations. 

Previous simulation results, which iire shown in Chapter 3 and [87], show that there 

is a crossover point beyond which the linecir adaptive MD detector is superior to the 

HLMF detector in terms of BER as the PRID increases. Figure 5.2 is a sketch of the 

BER performance of the linear adaptive MD and HL\IF detectors as a function of the 

PRID based on the previous simulation results. 

This crossover point gets higher as the dispersion of the additive noise increases, i.e., 

the additive noise becomes more impulsive. In most cases the higher crossover point 

occiurs beyond the desirable range of BER performance as shown in [49]. In oiu: case 

7 = 1 is large enough to provide a severe impulsive environment for most a's of the 

additive impulsive noise. From our specific simulation results, it is observed that the 

crossover points are roughly located between PRID = 13 dB and PRID = 17 dB (see 
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BER 

HDLMF (Nonlinear), 

/ 
X Linear MD. 

MAI-Iimited 

^XKOISe' 
PRID (dB) 

Figure 5.2 Sketch of the BER performance as a function of the PRID for 
an asj-nchronous DS/CD\LA. system. 

Figures 3.2 - 3.10). Therefore, we choose PRID = 15 dB as the nominal crossover point 

for our problem. The chajinel en\*ironments can be divided into two situations: impulsive 

noise-limited (if the PRID is less than the nominal crossover point) ajid \L\I-hmited (Lf 

the PRID is larger than the nomined crossover point). 

The PRID is a convenient ciucintity for performance comparison in simulations. How­

ever. in practice the carrier-to-interference ratio (CIR) is used. The CIR [108| is given 

bv 

CIR = 
lo Rb 

15.2) 

where Ef, is the energy per bit. is the interference power per Hz. Rf, is the bit per 

second, and B,: is the radio channel bandwidth m Hz. The PRID is closely related to 

the Since the ^ is determined by the measured signal power [9|. the PRID can be 

estimated. 

From the observations about the nominal crossover point and the characteristics of 

the adaptive MD and HL\IF detectors, we wiU determine fuzzy sets corresponding to 

the input and output variables as shown in Figiure 5.3 and Figiure 5.4. For the input 

PRID variable we define two fuzzy sets. The sets tire for low (L) and high (H) levels of 
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the PRID. The membership function mt,{x) of each of the fuzzy sets is a trapezoidal 

function [109]. [110] given by 

mtz{x )  =  t rapezo id (x :a .b . c .d )  

' X — a d — X 
= max mm 1. . 0  (5.3) 

b — a d — c 

Table 5.1 shows the parameters for trapezoidal membership functions used in the input 

fuzzy sets. Each membership fimction is symmetric about the nominal crossover point 

at PfUD = 15 dB. Figiure 5.3 shows the membership functions of the input fuzzy sets. 

Table 5.1 Parameters for Trapezoidal Mem­
bership Functions 

Parameters a b c d 
Fuzzv sets L -18 -12 12 18 
(PRID) H 12 18 80 86 

Mcmbenhip fiinclion plols 

I 

inDUtuwiable 'Drid" 

Figure 5.3 Membership functions of the input fuzzy sets. 

For the output variable 3 we define two fuzzy sets such as low(L) and high(H) 

depending the output value ,3 ranging between 0 and 1. The membership function 

md-i:) of each of the fuzzy sets is Gaussian function [llOj given by 

mcix) = exp 
I (x - cY 

a'-
(5.4) 



www.manaraa.com

90 

where c is a position parameter and cr is a shape parameter. c"s are set to 0 and 1. a 

is set to 0.03356. The Gaussian functions are heavily distributed around the vicinity 

of J = 0 and 3 = 1 according to the characteristics of the adaptive MD and HL\IF 

detectors depending on 3 as shown in (5.1). Figiure 5.4 shows the membership functions 

of the two output fuzzy sets. 

UtmDtrshiD ftnclion plol5 
I 

)  -  J  :  J »  I j  5  OS : 7 • i • ) 
oulDutuambIt 'tcU" 

Figure 5.4 Membership fimctions of the output fuzzy sets. 

Fuzzy rules can be ^^Titten as emtecedent-consequent pairs of IF-THEN statements 

[iG9|. [ill]. The two linguistic fuzzy rules are: 

IF PRID is L . THEN 3 is L 

and 

IF PRID is H . THEN 3 is PL 

FigTire 5.5 shows the architectiure of the additive [111] (or Mcundani [109] ) fuzzy sys­

tem. Figiure 5.6 shows the fuzzy correlation-minimum inference system using minimum 

and sum for fiizzy implication and aggregation, respectively. Input fuzzy sets map the 

crisp input value (for example. PRID = 16 dB) of the PRID into cintecedent member­

ship or fit values. Each of the antecedent fit values scale the membership function of 

the consequent fuzzy set with pairwise minimum. The fuzzy system sums the clipped 
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Crisp 
output 
(beta) 

Crisp 
input 
(prid) 

Rule I 

Rule! 

Defuzzifier 
(Centroid) 

Fuzzitler 

(Input fuzzy sets) 

Figure 5.5 Additive fuzzy system. 

waveforms of the membership functions corresponding to the consequent fuzzy sets and 

computes the fuzzy centroid of the output membership functions. This defuzzification 

produces the crisp system output (for example, J = 0.614). 

Figture 5.7 shows a fuzzy input-output relationship generated by the fuzzy system. 

This relationship shows how the mixing parameter .3 varies as a fimction of the input 

variable. PRID. The mixing parameter .J is close to zero or very small when the PRID 

is less than 12.021 dB. This indicates that the resulting test statistic comes from the 

HL!MF detector. When the PRID is larger than 18.021 dB. 3 goes towards one. In this 

case the adaptive \ID detector is selected. When the PRJD level is in the range from 

12.021 dB to 18.021 dB. 3 takes on intermediate values between 0 and 1. The fuzzy 

system is insensitive to the PRID levels when the PRID is either Uirger than 18.021 dB 

or less them 12.021 dB. because 3 remains nearly unchanged. In the transition ranse 

from 12.021 dB to 18.021 dB, the fuzzy hybrid detector could suffer from a performance 

degradation to some extent, but it can be robust to the PRID mismatch. The fuzzy 

system was designed using the \LATLAB fuzzy logic toolbox [110}. 

5.4 Simulation Results 

The fuzzy hybrid detector is tested via Monte Carlo simulation in the same simulation 

environment as in Section 2.2. We compare the BER performance of the fuzzy hybrid 

detector wath that of other detectors: adaptive \ID. \IF. cmd IIL\IF. We consider an 

asynchronous BPSK DS/CDMA system ^\dth K = o users and = 2 users. 
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I 
! 
t 
} 

' 

I 
! 
t 
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I 

i 
40 

J 
16 0.614 

Figure 5.6 The fuzzy correlation-minimuin inference system using minimum 
and sum for fuzzy implication and aggregation, respectively: In 
this case PRID = 16 dB which gives the membership degree of 
"T'f/ClS) = 0.667. m£,(l6) = 0.333: The centroid output of the 
svstem is J = 0.614. 

t 
0.9 

0.8 

0.7 

0.6 

X 0.5 
0.4-

0.3 

0.2 

0.1 

0 

= HLMF 

[^=VinearMD 

HLMF + Linear MD 

10 15 20 25 30 35 40 
prid 

Figaure 5.7 Mixing parameter 3 as a function of the input variable. PRID. 
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Figure 5.8 tiirough Figure 5.L0 show the BER performance as a function of the PRID 

for the three condition sets such as {a = 1.1 and 7 = 0.2}-. {a = 1.5 and 7 = 1}. and 

(a = 1.9 and 7 = 1}. respectively. Here q is the characteristic exponent and 7 is the 

dispersion of the 5aS noise process. For each PRID level the performance of the fuzzy 

hybrid detector is nearly comparable to whichever detector performs better. Note that 

the HL^IF detector performs better than the adaptive MD detector using the least mean 

p-norm (LMP) algorithm [60] when the PRID is less than about 18 dB and vice versa 

elsewhere. The main advantage of the fuzzy hybrid detector is that this detector provides 

significant performance improvements over the adaptive MD detector for impulsive noise-

limited environments (i.e.. if the PRID is less them the nominal crossover point of PRID 

= 15 dB). 
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Figure 5.8 BER as a function of the PRID for an aajTichronous DS/CD\L\. 
system: a = Li. 7 = 0.2. K = 5. = 2. and LMP with p = 1. 
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Figure 5.9 BER as a function of the PRID for an asv-nchronous DS/CDMA 
sy-stem: a = 1.5, 7 = I. K = 5. = 2. and LMP with p = 1. 
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Figure 5.10 BER EIS a function of the PRID for an £is\'nchronous DS/CDMA 
system: a = 1.9. 7 = 1. R' = 5. = 2. and LMP with p = 1.3. 
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CHAPTER 6 CONCLUSIONS 

6.1 Summary 

We have considered the problems of miiltiple-access interference suppression for as\-n-

chronoiis DS/CDMA s\*stems in additive non-Gaussian impulsive noise channels. The 

additive non-Gaussian impulsive noise was modeled as SctS process with 1 < a < 2. We 

primarily focused on the hnear detectors based on transversal filters. We compared the 

BER performance of the proposed detectors with that of different detectors such as the 

linear MF, FILMF. and \EMSE detectors. 

In Chapter 3. we presented an interference suppression scheme bc\sed on the MD 

criterion. The LMP algorithm was used to approximate the MD solution for the tap 

weights. We derived some closed-form expressions for the MD detector in the context of 

a SaS process under the independence assumptions made Ln Chapter 3. The closed-form 

results are analogous to those of XO'ISE detectors. The performance of the adaptive MD 

detector was compared with that of previously proposed detectors by extensive Monte 

Carlo simulation. The simulation results showed that the performance of the adaptive 

MD detector is much better than that of the other detectors in MAI-limited environ­

ments. while it is comparable to that of the conventional MF detector elsewhere. The 

proposed detector is good near-far resistance in the presence of additive non-Gaussian 

impulsive noise modeled as a SaS process. In this case the MMSE criterion is not ef­

fective. The MD criterion can be used as a possible alternative of the \Di.ISE criterion 

in SaS non-Gaussicm impulsive noise channels. The MD criterion Ccin be viewed as a 



www.manaraa.com

98 

generalization of the \IMSE criterion to a SaS noise process. Since the L\IP algorithm 

is valid for p < a < 2. the L\IP algorithm with p = 1 can be robust to unknown 

characteristic exponent a E (1.2]. This observation is consistent with the fact that the 

minimum Li-norm error criterion has been successfully used in impulsive noise environ­

ments. The limitation of the proposed detector is that the LMP algorithm used in the 

adaptive implementation of the MD criterion has a slow convergence rate. The L\IP 

cdgorithm generally takes on the order of several thousand bits to converge to a steady 

state. Since the covariation is nonlinear, the theoretical ajiaiysis for SaS processes is 

limited. 

In Chapter 4. we presented an interference suppression scheme using least Lp-norra 

estimation. The interference suppression was formulated as a linear Lp-norm estimation 

problem. This method requires no assumptions on the statistics of the input signals 

unlike stochastic gradient-based algorithms stich eis the LMS and LMP algorithms. The 

Lp-norm solution for the tap weighting vector of the transversal filter was obtciined using 

the IRLS algorithm. The IRLS algorithm converges for I < p < 3. while it diverges for 

3 < p < 3C . We thus considered the cases for 1 < p < 3. The simulation results 

showed that the interference suppression scheme using the least Lp-norm estimation 

offers significant performance improvements over the adaptive MD detector using the 

LMP algorithm. The detector's BER performance depends on the value of p in the 

Lp-norm. The BER performance significantly improves as p approaches 3. The least 

Lp-norm detector has better near-far resistance than the adaptive MD detector at the 

cost of higher computational complexity. The computational complexity of the IRLS 

algorithm is 0{Ku • per sjinbol. while the L^'IP algorithm takes 0(2JV) per symbol. 

Here 0(:V) represents the computational complexity of order N iind Ku denotes the 

number of iterations of the IRLS cdgorithm. 

Finally, interference suppression technique using the fuzzy hybrid approach was pre­

sented in Chapter 5. This hybrid detector takes advantage of the performance of the 
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HLMF detector in impulsive noise-limited en^oronments and the performance of the 

adaptive MD detector in a \LAI-liniited en\'ironments. The hybrid detector linearly 

combines the test statistics of the adaptive \ID and HLMF detectors using the mixing 

parameter .3. This mixing parameter was controlled by a fuzzy system according to the 

underlying channel environment. The simulation results showed that the performance 

of the fuzzy hybrid detector is a combination of the better performance characteristics 

of the adaptive MD and HLMF detectors depending on the underlying channel environ­

ments. 

6.2 Recommendations for Future Work 

Some possible directions for future work cure: 

• Fast adaptive algorithms can be considered to speed up the convergence rate of the 

adaptive MD detector. Further study is needed to examine the transient behavior 

such as the stability conditions in the context of a SaS process. Since the SaS 

process does not have a finite second-order moment, conventional methods based 

on the first-order and second-order moments cannot be used. 

• The effect of higher values ol p {jp > 3) in the least Lp-norm estimation on the 

steady state performance should be investigated. The IRLS algorithm converges 

for 1 < p < 3. To get an insight of higher values of p. other algorithms can 

be introduced. Fiurther study should be focused on adaptive implementations. 

Methods for reducing computational complexity can be considered. 
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APPENDIX A COMPLETE DERIVATIONS FOR 

SECTION 3.3 

Derivation of MD Formula and Relevant Solutions 

Under the assumptions made in Chapter 3. we can solve (3.1). Starting with (3.1), 

it foUows that 

r n i i ) . b { i )  -  Z { i . ) \  =  [^„(?:).6(^•) - w^r(0]^ = 0 

or 

•V- l  

b[i.)cn + Jn(0 + tl-p (6(«)cp + jp{i) + Vp{i.)) 
p=0 

= 0 

or 

.V -1 \ .V - 1 v - I 
K'-y-r. jrjj) + | ̂(0 " '^'pJpi') " ̂  "%'>(') 

p=0 / p=0 p—0 

= 0 

or 

.1 
jV-l :V-1 jV-l 

b{i)cr,. ( i 1 b{i) - X] Wpjp i i )  -  WpVp{ i )  
p=0 / p=0 p—0 

B 
— i — 1  

iV-1 \ iV-l /V-l 
Jn { i ) .  (  1  -  b{ i )  -  Y  f^p ip (0  -

p=0 / p=0 p=0 

c 

+ 

iV -1  \  JV-1  .v-l 

fri(0- (1 - XI ~ XI '^'pipCo - XI 
p=0 / p=0 p=0 

= 0 (A.1) 
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for all 72 E [0. N — I] and 1 < a < 2. Applying the properties of the covariation given in 

Chapter 2 to the left-hand side of (A.l) yields 

(iV-l \ ,V-I iV-l 
1 - ̂  iVpCp J b{i) - Wpjp{i) - ̂  Wpi'p{i) 

p=0 / p=0 p=0 

= ^ ((1 - 51 [6(0.6(01 
I P=0 

= 76(1-W^C)<-^>C„. 

B  =  
/V-l ,V-l ;V-l 

Mi). (1 - ) 6(0 - f^'piplO - Y tiv'-'p(0 
p=0 / p=0 p=0 

.V- I 

p=0 

= —a--,<1-1>, 
' 7n 

and 

C = 
.v-i .V- 1 •V-l 

'•n(0- (1 ~ S ) ^(0 - X! '^WpIO - X] '^'p^'p(0 
\ p=0 / p=0 p=0 

;V- I 
=  - E  -,<0: - 1> U.' [r.l nth 

p=0 

Substituting A. B .  and C  into (A.i) yields: 

Ih (1 - w^c)^" c„ - tZ-<" ^>7^^ - = 0 

or 

(A.2) 

for all n € [O.iV — l] and 1 < q < 2. In the matrix-form. (A.2) can be written as 

rw. = 76(l-w'"c)<^-^>c 
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which yields (3.3). Let a = 2. Then, since Wa|Q=2 = w. (3.3) reduces to 

w = 7j, (l --^c) r~^c. (A.4) 

Taking the transpose of both sides of (A.4) and multiplying by c gives 

w^c = 7j(l — •^c)c^(r"\)^c. 

Solving for w^c and substituting it into (A.4). we have 

w = 7 b -r-'c (A.5) 
1 + 7j,c^(r'^)~'c 

where w is the minimum dispersion solution for w. Note that when a = 2. 7^ = jcrf 

and r ='jR =|R^. where CTJ = E[[|6(z)|^] and R = Rj + R^. = £"jj • j^] 4- £" [v • v^]. 

Hence (A.5) becomes (3.4). 

Next, pre-multiplying both sides of (A.3) by gives 

w rw^ = 76(1 - ( A.6) 

From (3.5) and (A.6) it follows that 

•^a.mm -^ct iw(cf = w.wa{i)~wa 

= 7^(1-w^c)(l-w^c)<^-'>+7^(1-w^c)<^-'>w^c (A. 7) 

which reduces to (3.6). Let ./mm = [[^(/i)!"^], where Jaiia is the minimum mean-squcu:ed 

error. Then, when a = 2. (A.7) also reduces to 

•^a.atin = = = ^0-g(l - W^c) (A.8) 

Hence we obtain (3.7). 
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Derivation of Output SIR 

By using the properties of the covariation and independence assumptions made in 

Chapter 3. it follows: 

Numerator of (3.8) 

= [w(i)^^'(0c.w(i)^6(/)c]^ 

= w(z)^c I w(z)^cp ^ s ign{w{i)^cyii^ 

= |w(o^cr7(, 

and 

Denominator of (3.8) 

= iw(0^(j('') + v(/:)). w(i)^(j(0 + v(/:))]^ 
';V-I :V-l 

Y1 "•v(0(ip(0 + ',{'•) + 'v(O) 
_p=0 

V - I  

p=0 

.V-I 

= X!"--p(0 

7=0 
.v-i 

jp{i)  + '->('•)• Y1 0'/(0 + '-/(O) 
7=0 

p=0 

.v-i 

.V- I 

7=0 

'  N- I 

+ 

iV-1 

.V- 1 

,(?:). ̂  

7=0 

- J] 1 51 bp(«)-i7(0 + f7(0]a + H + '"'/(Ola 
p=0 

•V-l 

7=0 

'  N - I  
7=0 

.V- 1 

= "•'p(o s XI ^ bp(0-
p=0 t 1=0 7=0 

iV-1 ,V-l 

~ y ] "-'p(o j y ] '^v('')[rjip.</ "i" y [ '^'7(0 [^^ip. 
p=0 t '/=0 7=0 

= w''^(z)(r^ + r,.)wa(o = w^(i)rw^(i).  

V-'l 

(A.10) 

Substituting (A.9) and (A.IO) into the definition expression of the output SIR yields 

(3.9). From (A.6) and (3.6) it follows that 
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SIR\ 
j —. 7* ja 

76 |w'c |  
w(o=w.w„(t)=w„ — 

— 7" I ri 

l b  W C 

7^(1 — 
— 7^ I O: 

! b  W C 

• W^C rk.mm 
— T I 

l b  iw'cl  
•^Zmia |w^c| signiw^c) 

7j,|w^cp ^ •'iign{w^c) 

.P -a.min 
A.il) 

which leads to (3.10). 

When a = 2. by using (A.8) and (3.7). (3.10) becomes 

SIRaitiK = ^ w^c 
a.min 

=  i ^ r i - i - 7 .  
2 ••' mm \ " f) 

which reduces to (3.11). 

Derivation of Probability of Error 

By the assumptions made in Chcipter 3. the test statistic Z{i) is a SaS rtindom 

variable. The conditional location parameters tire given by 

/io = E[Z{V)\b{i)=^i.hj{i.)'\ 

= w(/:)^c + w(z)^jj(i) (A.i2) 

and 

A, = £[Z(0|6(i)  = -l .bj( i) l  

= -w(0''': + w(i)'j'j(')- (A.iri) 
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Let Zo( i )  =  Z( i ) j b ( i )=  +  i . b j ( i ) -  Ao ^i('0l6(i)=-i-bj(:) = -^('0 ~  M l -  Then for 1 < a < 2 

the dispersion 7z(i) is given by 

=  [Zo( i ) .Zo(nl = [Z , ( i ) .Z , ( i ) l  

= [w(0^v(o.w(/;)^v(?;)]^ = w(7:)^r,w^(7;). (A. 14) 

From (3.5) and (A. 14) we obtain 

yz(i} = - 76(1 - w(?:) c)(i - w(iyc)^'^ > - w(/:)'%w^(i) (a.i5) 

for 1 < Q: < 2. 7z(i-) corresponding to the MD sohxtion is thus given by 

7z(.).mia = 7Z(.) (w(i) = w; w^(0 = w^) 

= -^Zmin - 7^(1 - W^c)(l - - W%W^. (A.16) 

Substituting (3.6) Into (A.16) yields 

7z(z).mm = ^ c) -

= . w^c — w^r w •'a.mm w ijWn-

Rearranging (3.10) in terms of cmd substituting it into (A. 17). we get 

(A. 17) 

' Z(e).aiia — (w^c)'^'^ • W^C — W^rjW^ 
SIR^ 

7b 
SIR„ 

— w^r j-w  ̂

for 1 < a < 2. 

WTien Q = 2. 

/a(s;7^(i)-/io) = / exp 
(s - MoY 

2a'̂ -Z(z )  

(A.18) 

(A.19) 
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where (j| = Substituting (A.19) into (3.12) thus yields 

r° i_ 

• / -x:  

P e i h j { i ) )  = / exp 

^Z{z )  

(s A^o) 
20"^-

Z { i )  

2 

sTZ). 
^ ̂  I w(0^c +w(/)^j^(?:)^ 

J 
=  o f  ^  

y >/2w(z)^r„w^(?:) J 

w'here Q{x) = Hence we obtain (3.13). 
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